Cargando…
Delayed contrast-enhanced magnetic resonance imaging enables detection of pulmonary artery lesions in Takayasu’s arteritis
BACKGROUND: Delayed contrast-enhanced magnetic resonance imaging (DE-MRI) is a useful technique to identify arterial wall inflammation. The aim of this study was to explore the value of DE-MRI in the evaluation of pulmonary artery (PA) lesions in Takayasu’s arteritis (TAK) compared with (18)F-fuorod...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
AME Publishing Company
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9816748/ https://www.ncbi.nlm.nih.gov/pubmed/36620156 http://dx.doi.org/10.21037/qims-22-130 |
_version_ | 1784864607614009344 |
---|---|
author | Guo, Xiaojuan Liu, Min Liu, Mingxi Ma, Zhanhong Gong, Juanni Yang, Yuanhua Gao, Wei Wu, Jiaoyan Yang, Qi Yang, Min-Fu |
author_facet | Guo, Xiaojuan Liu, Min Liu, Mingxi Ma, Zhanhong Gong, Juanni Yang, Yuanhua Gao, Wei Wu, Jiaoyan Yang, Qi Yang, Min-Fu |
author_sort | Guo, Xiaojuan |
collection | PubMed |
description | BACKGROUND: Delayed contrast-enhanced magnetic resonance imaging (DE-MRI) is a useful technique to identify arterial wall inflammation. The aim of this study was to explore the value of DE-MRI in the evaluation of pulmonary artery (PA) lesions in Takayasu’s arteritis (TAK) compared with (18)F-fuorodeoxyglucose positron emission tomography/computed tomography ((18)F-FDG PET/CT). METHODS: Patients with TAK were recruited for this prospective, observational study. Imaging and clinical assessments were performed concurrently. Only thoracic arteries were evaluated, and they were divided into 18 segments per person. All arterial lesions were evaluated using both PET/CT and DE-MRI. Correlations between both methods were assessed in the PA and thoracic aorta. A receiver operating characteristic (ROC) curve was used to analyze the value of imaging features in detecting disease activity based on National Institutes of Health (NIH) criteria. RESULTS: A total of 24 patients contributed 432 arterial segments. Using PET/CT, correlations between arterial wall DE, thickening, and edema in the PA were 84.52%, 67.92%, and 58.33%, respectively, with Cohen’s kappa =0.69, 0.30, and 0.13, respectively; for the thoracic aorta, the values were 86.38%, 80.00%, and 75.92%, respectively, with Cohen’s kappa =0.71, 0.52, and 0.372, respectively. There was a significant difference in the incidence of wall DE between the PA and thoracic aorta in patients with clinically active TAK (χ(2)=6.85, P=0.009). DE-MRI presented a higher area under the curve [area under the curve (AUC); 0.729, P=0.047] than wall thickening and edema in the detection of TAK activity. The wall DE combined with erythrocyte sedimentation rate (ESR) showed improved efficiency (AUC: 0.858, P=0.003). CONCLUSIONS: DE-MRI displays appreciable correlations with PET/CT findings and allows for the detection of PA inflammation in patients with TAK; it shows higher values in the thoracic aorta than in the PA. The combination of wall DE and ESR can improve the efficiency of assessing disease status. |
format | Online Article Text |
id | pubmed-9816748 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | AME Publishing Company |
record_format | MEDLINE/PubMed |
spelling | pubmed-98167482023-01-07 Delayed contrast-enhanced magnetic resonance imaging enables detection of pulmonary artery lesions in Takayasu’s arteritis Guo, Xiaojuan Liu, Min Liu, Mingxi Ma, Zhanhong Gong, Juanni Yang, Yuanhua Gao, Wei Wu, Jiaoyan Yang, Qi Yang, Min-Fu Quant Imaging Med Surg Original Article BACKGROUND: Delayed contrast-enhanced magnetic resonance imaging (DE-MRI) is a useful technique to identify arterial wall inflammation. The aim of this study was to explore the value of DE-MRI in the evaluation of pulmonary artery (PA) lesions in Takayasu’s arteritis (TAK) compared with (18)F-fuorodeoxyglucose positron emission tomography/computed tomography ((18)F-FDG PET/CT). METHODS: Patients with TAK were recruited for this prospective, observational study. Imaging and clinical assessments were performed concurrently. Only thoracic arteries were evaluated, and they were divided into 18 segments per person. All arterial lesions were evaluated using both PET/CT and DE-MRI. Correlations between both methods were assessed in the PA and thoracic aorta. A receiver operating characteristic (ROC) curve was used to analyze the value of imaging features in detecting disease activity based on National Institutes of Health (NIH) criteria. RESULTS: A total of 24 patients contributed 432 arterial segments. Using PET/CT, correlations between arterial wall DE, thickening, and edema in the PA were 84.52%, 67.92%, and 58.33%, respectively, with Cohen’s kappa =0.69, 0.30, and 0.13, respectively; for the thoracic aorta, the values were 86.38%, 80.00%, and 75.92%, respectively, with Cohen’s kappa =0.71, 0.52, and 0.372, respectively. There was a significant difference in the incidence of wall DE between the PA and thoracic aorta in patients with clinically active TAK (χ(2)=6.85, P=0.009). DE-MRI presented a higher area under the curve [area under the curve (AUC); 0.729, P=0.047] than wall thickening and edema in the detection of TAK activity. The wall DE combined with erythrocyte sedimentation rate (ESR) showed improved efficiency (AUC: 0.858, P=0.003). CONCLUSIONS: DE-MRI displays appreciable correlations with PET/CT findings and allows for the detection of PA inflammation in patients with TAK; it shows higher values in the thoracic aorta than in the PA. The combination of wall DE and ESR can improve the efficiency of assessing disease status. AME Publishing Company 2022-11-24 2023-01-01 /pmc/articles/PMC9816748/ /pubmed/36620156 http://dx.doi.org/10.21037/qims-22-130 Text en 2023 Quantitative Imaging in Medicine and Surgery. All rights reserved. https://creativecommons.org/licenses/by-nc-nd/4.0/Open Access Statement: This is an Open Access article distributed in accordance with the Creative Commons Attribution-NonCommercial-NoDerivs 4.0 International License (CC BY-NC-ND 4.0), which permits the non-commercial replication and distribution of the article with the strict proviso that no changes or edits are made and the original work is properly cited (including links to both the formal publication through the relevant DOI and the license). See: https://creativecommons.org/licenses/by-nc-nd/4.0 (https://creativecommons.org/licenses/by-nc-nd/4.0/) . |
spellingShingle | Original Article Guo, Xiaojuan Liu, Min Liu, Mingxi Ma, Zhanhong Gong, Juanni Yang, Yuanhua Gao, Wei Wu, Jiaoyan Yang, Qi Yang, Min-Fu Delayed contrast-enhanced magnetic resonance imaging enables detection of pulmonary artery lesions in Takayasu’s arteritis |
title | Delayed contrast-enhanced magnetic resonance imaging enables detection of pulmonary artery lesions in Takayasu’s arteritis |
title_full | Delayed contrast-enhanced magnetic resonance imaging enables detection of pulmonary artery lesions in Takayasu’s arteritis |
title_fullStr | Delayed contrast-enhanced magnetic resonance imaging enables detection of pulmonary artery lesions in Takayasu’s arteritis |
title_full_unstemmed | Delayed contrast-enhanced magnetic resonance imaging enables detection of pulmonary artery lesions in Takayasu’s arteritis |
title_short | Delayed contrast-enhanced magnetic resonance imaging enables detection of pulmonary artery lesions in Takayasu’s arteritis |
title_sort | delayed contrast-enhanced magnetic resonance imaging enables detection of pulmonary artery lesions in takayasu’s arteritis |
topic | Original Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9816748/ https://www.ncbi.nlm.nih.gov/pubmed/36620156 http://dx.doi.org/10.21037/qims-22-130 |
work_keys_str_mv | AT guoxiaojuan delayedcontrastenhancedmagneticresonanceimagingenablesdetectionofpulmonaryarterylesionsintakayasusarteritis AT liumin delayedcontrastenhancedmagneticresonanceimagingenablesdetectionofpulmonaryarterylesionsintakayasusarteritis AT liumingxi delayedcontrastenhancedmagneticresonanceimagingenablesdetectionofpulmonaryarterylesionsintakayasusarteritis AT mazhanhong delayedcontrastenhancedmagneticresonanceimagingenablesdetectionofpulmonaryarterylesionsintakayasusarteritis AT gongjuanni delayedcontrastenhancedmagneticresonanceimagingenablesdetectionofpulmonaryarterylesionsintakayasusarteritis AT yangyuanhua delayedcontrastenhancedmagneticresonanceimagingenablesdetectionofpulmonaryarterylesionsintakayasusarteritis AT gaowei delayedcontrastenhancedmagneticresonanceimagingenablesdetectionofpulmonaryarterylesionsintakayasusarteritis AT wujiaoyan delayedcontrastenhancedmagneticresonanceimagingenablesdetectionofpulmonaryarterylesionsintakayasusarteritis AT yangqi delayedcontrastenhancedmagneticresonanceimagingenablesdetectionofpulmonaryarterylesionsintakayasusarteritis AT yangminfu delayedcontrastenhancedmagneticresonanceimagingenablesdetectionofpulmonaryarterylesionsintakayasusarteritis |