Cargando…
Magnetic resonance-based radiomics nomogram for predicting microsatellite instability status in endometrial cancer
BACKGROUND: Microsatellite instability (MSI) status is an important indicator for screening patients with endometrial cancer (EC) who have potential Lynch syndrome (LS) and may benefit from immunotherapy. This study aimed to develop a magnetic resonance imaging (MRI)-based radiomics nomogram for the...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
AME Publishing Company
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9816750/ https://www.ncbi.nlm.nih.gov/pubmed/36620141 http://dx.doi.org/10.21037/qims-22-255 |
Sumario: | BACKGROUND: Microsatellite instability (MSI) status is an important indicator for screening patients with endometrial cancer (EC) who have potential Lynch syndrome (LS) and may benefit from immunotherapy. This study aimed to develop a magnetic resonance imaging (MRI)-based radiomics nomogram for the prediction of MSI status in EC. METHODS: A total of 296 patients with histopathologically diagnosed EC were enrolled, and their MSI status was determined using immunohistochemical (IHC) analysis. Patients were randomly divided into the training cohort (n=236) and the validation cohort (n=60) at a ratio of 8:2. To predict the MSI status in EC, the tumor radiomics features were extracted from T2-weighted images and contrast-enhanced T1-weighted images, which in turn were selected using one-way analysis of variance (ANOVA) and the least absolute shrinkage and selection operator (LASSO) algorithm to build the radiomics signature (radiomics score; radscore) model. Five clinicopathologic characteristics were used to construct a clinicopathologic model. Finally, the nomogram model combining radscore and clinicopathologic characteristics was constructed. The performance of the three models was evaluated using receiver operating characteristic (ROC), calibration, and decision curve analyses (DCA). RESULTS: Totals of 21 radiomics features and five clinicopathologic characteristics were selected to develop the radscore and clinicopathological models. The radscore and clinicopathologic models achieved an area under the curve (AUC) of 0.752 and 0.600, respectively, in the training cohort; and of 0.723 and 0.615, respectively, in the validation cohort. The radiomics nomogram model showed improved discrimination efficiency compared with the radscore and clinicopathologic models, with an AUC of 0.773 and 0.740 in the training and validation cohorts, respectively. The calibration curve analysis and DCA showed favorable calibration and clinical utility of the nomogram model. CONCLUSIONS: The nomogram incorporating MRI-based radiomics features and clinicopathologic characteristics could be a potential tool for the prediction of MSI status in EC. |
---|