Cargando…
Classification of solid pulmonary nodules using a machine-learning nomogram based on (18)F-FDG PET/CT radiomics integrated clinicobiological features
BACKGROUND: To develop and validate an (18)F-fluorodeoxyglucose (FDG) positron emission tomography/computed tomography (PET/CT) and clinico-biological features-based nomogram for distinguishing solid benign pulmonary nodules (BPNs) from malignant pulmonary nodules (MPNs). METHODS: A total of 280 pat...
Autores principales: | Ren, Caiyue, Xu, Mingxia, Zhang, Jiangang, Zhang, Fuquan, Song, Shaoli, Sun, Yun, Wu, Kailiang, Cheng, Jingyi |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
AME Publishing Company
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9816842/ https://www.ncbi.nlm.nih.gov/pubmed/36618813 http://dx.doi.org/10.21037/atm-22-2647 |
Ejemplares similares
-
Clinico-biological-radiomics (CBR) based machine learning for improving the diagnostic accuracy of FDG-PET false-positive lymph nodes in lung cancer
por: Ren, Caiyue, et al.
Publicado: (2023) -
Machine learning based on clinico-biological features integrated (18)F-FDG PET/CT radiomics for distinguishing squamous cell carcinoma from adenocarcinoma of lung
por: Ren, Caiyue, et al.
Publicado: (2020) -
Quantitative classification and radiomics of [(18)F]FDG-PET/CT in indeterminate thyroid nodules
por: de Koster, Elizabeth J., et al.
Publicado: (2022) -
(18)F-FDG PET/CT-based radiomics nomogram could predict bone marrow involvement in pediatric neuroblastoma
por: Feng, Lijuan, et al.
Publicado: (2022) -
Radiomics analysis improves (18)FDG PET/CT-based risk stratification of cytologically indeterminate thyroid nodules
por: Giovanella, Luca, et al.
Publicado: (2021)