Cargando…
Evaluating User Preferences, Comprehension, and Trust in Apps for Environmental Health Hazards: Qualitative Case Study
BACKGROUND: Climate change is projected to increase environmental health hazard risks through fire-related air pollution and increased airborne pollen levels. To protect vulnerable populations, it is imperative that evidence-based and accessible interventions are available. The environmental health...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
JMIR Publications
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9816954/ https://www.ncbi.nlm.nih.gov/pubmed/36548030 http://dx.doi.org/10.2196/38471 |
Sumario: | BACKGROUND: Climate change is projected to increase environmental health hazard risks through fire-related air pollution and increased airborne pollen levels. To protect vulnerable populations, it is imperative that evidence-based and accessible interventions are available. The environmental health app, AirRater, was developed in 2015 in Australia to provide information on multiple atmospheric health hazards in near real time. The app allows users to view local environmental conditions, and input and track their personal symptoms to enable behaviors that protect health in response to environmental hazards. OBJECTIVE: This study aimed to develop insights into users’ perceptions of engagement, comprehension, and trust in AirRater to inform the future development of environmental health apps. Specifically, this study explored which AirRater features users engaged with, what additional features or functionality needs users felt they required, users’ self-perception of understanding app information, and their level of trust in the information provided. METHODS: A total of 42 adult AirRater users were recruited from 3 locations in Australia to participate in semistructured interviews to capture location- or context-specific experiences. Participants were notified of the recruitment opportunity through multiple avenues including newsletter articles and social media. Informed consent was obtained before participation, and the participants were remunerated for their time and perspectives. A preinterview questionnaire collected data including age range, any preexisting conditions, and location (postcode). All participant data were deidentified. Interviews were recorded, transcribed, and analyzed using thematic analysis in NVivo 12 (QSR International). RESULTS: Participants discussed app features and functionality, as well as their understanding of, and trust in, the information provided by the app. Most (26/42, 62%) participants used and valued visual environmental hazard features, especially maps, location settings, and hazard alerts. Most (33/42, 78%) found information in the app easy to understand and support their needs, irrespective of their self-reported literacy levels. Many (21/42, 50%) users reported that they did not question the accuracy of the data presented in the app. Suggested enhancements include the provision of meteorological information (eg, wind speed or direction, air pressure, UV rating, and humidity), functionality enhancements (eg, forecasting, additional alerts, and the inclusion of health advice), and clarification of existing information (eg, symptom triggers), including the capacity to download personal summary data for a specified period. CONCLUSIONS: Participants’ perspectives can inform the future development of environmental health apps. Specifically, participants’ insights support the identification of key elements for the optimal development of environmental health app design, including streamlining, capacity for users to customize, use of real time data, visual cues, credibility, and accuracy of data. The results also suggest that, in the future, iterative collaboration between developers, environmental agencies, and users will likely promote better functional design, user trust in the data, and ultimately better population health outcomes. |
---|