Cargando…
A computational pipeline to learn gene expression predictive models from epigenetic information at enhancers or promoters
Here, we present a computational pipeline to obtain quantitative models that characterize the relationship of gene expression with the epigenetic marking at enhancers or promoters in mouse embryonic stem cells. Our protocol consists of (i) generating predictive models of gene expression from epigene...
Autores principales: | González-Ramírez, Mar, Blanco, Enrique, Di Croce, Luciano |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9816966/ https://www.ncbi.nlm.nih.gov/pubmed/36583961 http://dx.doi.org/10.1016/j.xpro.2022.101948 |
Ejemplares similares
-
Differential contribution to gene expression prediction of histone modifications at enhancers or promoters
por: González-Ramírez, Mar, et al.
Publicado: (2021) -
Productive visualization of high-throughput sequencing data using the SeqCode open portable platform
por: Blanco, Enrique, et al.
Publicado: (2021) -
Computational pipeline for designing guide RNAs for mismatch-CRISPRi
por: van Gestel, Jordi, et al.
Publicado: (2021) -
Timesias: A machine learning pipeline for predicting outcomes from time-series clinical records
por: Zhang, Hanrui, et al.
Publicado: (2021) -
An open access, machine learning pipeline for high-throughput quantification of cell morphology
por: Welter, Emma M., et al.
Publicado: (2022)