Cargando…
Validation of skeletal muscle and adipose tissue measurements using a fully automated body composition analysis neural network versus a semi-automatic reference program with human correction in patients with lung cancer
RATIONALE AND OBJECTIVES: To validate skeletal muscle and adipose tissues cross sectional area (CSA) and densities between a fully automated neural network (test program) and a semi-automated program requiring human correction (reference program) for lumbar 1 (L1) and lumbar 2 (L2) CT scans in patie...
Autores principales: | Byrne, Cecily A., Zhang, Yanyu, Fantuzzi, Giamila, Geesey, Thomas, Shah, Palmi, Gomez, Sandra L. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9816970/ https://www.ncbi.nlm.nih.gov/pubmed/36619471 http://dx.doi.org/10.1016/j.heliyon.2022.e12536 |
Ejemplares similares
-
Concordance of Computed Tomography Regional Body Composition Analysis Using a Fully Automated Open-Source Neural Network versus a Reference Semi-Automated Program with Manual Correction
por: Gomez-Perez, Sandra L., et al.
Publicado: (2022) -
Expression of genes in the skeletal muscle of individuals with cachexia/sarcopenia: A systematic review
por: Byrne, Cecily A., et al.
Publicado: (2019) -
Disparities in inflammation between non-Hispanic black and white individuals with lung cancer in the Greater Chicago Metropolitan area
por: Byrne, Cecily A., et al.
Publicado: (2022) -
Increased Adiposity in Annexin A1-Deficient Mice
por: Akasheh, Rand T., et al.
Publicado: (2013) -
Fully and semi-automated shape differentiation in NGSolve
por: Gangl, Peter, et al.
Publicado: (2020)