Cargando…

Large-scale transfer of Ag nanowires from PET to PC film using a roll-to-roll UV lamination process for a capacitive touch sensor

Demand for flexible transparent sensors for futuristic cars is increasing since such sensors can enhance the freedom of design and aesthetic value in the interior of cars. Herein, we propose a unique roll-to-roll UV lamination process that can expedite large-scale Ag nanowire (AgNW) transfer for a f...

Descripción completa

Detalles Bibliográficos
Autores principales: Park, Yangkyu, Kim, Jae Pil, Kim, Wan Ho, Song, Young Hyun, Kim, Sunyoon, Jeong, Ho-Jung
Formato: Online Artículo Texto
Lenguaje:English
Publicado: The Royal Society of Chemistry 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9817082/
https://www.ncbi.nlm.nih.gov/pubmed/36688061
http://dx.doi.org/10.1039/d2ra05600c
_version_ 1784864682800054272
author Park, Yangkyu
Kim, Jae Pil
Kim, Wan Ho
Song, Young Hyun
Kim, Sunyoon
Jeong, Ho-Jung
author_facet Park, Yangkyu
Kim, Jae Pil
Kim, Wan Ho
Song, Young Hyun
Kim, Sunyoon
Jeong, Ho-Jung
author_sort Park, Yangkyu
collection PubMed
description Demand for flexible transparent sensors for futuristic cars is increasing since such sensors can enhance the freedom of design and aesthetic value in the interior of cars. Herein, we propose a unique roll-to-roll UV lamination process that can expedite large-scale Ag nanowire (AgNW) transfer for a flexible capacitive sensor, using a photocurable resin composed of an epoxy acrylate oligomer, a reactive monomer (1,6-hexanediol diacrylate), and a photoinitiator (1-hydroxycyclohexyl phenyl ketone). The acryl groups in the resin were rapidly crosslinked by UV irradiation, which facilitated the AgNWs transfer from a PET to a PC substrate with the speed of 1050 cm(2) min(−1) and enhanced the adhesion between the AgNWs and the PC substrate. Systematic experiments were performed to determine optimal fabrication parameters with respect to the UV dose, lamination pressure, and laser dicing conditions. At the optimal fabrication conditions, the sheet resistance of AgNWs on a PC film (PC-AgNW) was as small as 36.79 Ω sq(−1), which was only 3.17% deviation from that on a PET film (PET-AgNW). Furthermore, the optical transmittance of the PC-AgNW exceeded 88% over the visible range, and it was greater than that of the PET-AgNW. Notably, the sheet resistance of the PC-AgNW was almost constant after 50 taping and peeling cycles, indicating remarkable adhesion to the substrate. Furthermore, a capacitive touch sensor was fabricated using the PC-AgNW, and its switching signals were presented with and without finger touch.
format Online
Article
Text
id pubmed-9817082
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher The Royal Society of Chemistry
record_format MEDLINE/PubMed
spelling pubmed-98170822023-01-20 Large-scale transfer of Ag nanowires from PET to PC film using a roll-to-roll UV lamination process for a capacitive touch sensor Park, Yangkyu Kim, Jae Pil Kim, Wan Ho Song, Young Hyun Kim, Sunyoon Jeong, Ho-Jung RSC Adv Chemistry Demand for flexible transparent sensors for futuristic cars is increasing since such sensors can enhance the freedom of design and aesthetic value in the interior of cars. Herein, we propose a unique roll-to-roll UV lamination process that can expedite large-scale Ag nanowire (AgNW) transfer for a flexible capacitive sensor, using a photocurable resin composed of an epoxy acrylate oligomer, a reactive monomer (1,6-hexanediol diacrylate), and a photoinitiator (1-hydroxycyclohexyl phenyl ketone). The acryl groups in the resin were rapidly crosslinked by UV irradiation, which facilitated the AgNWs transfer from a PET to a PC substrate with the speed of 1050 cm(2) min(−1) and enhanced the adhesion between the AgNWs and the PC substrate. Systematic experiments were performed to determine optimal fabrication parameters with respect to the UV dose, lamination pressure, and laser dicing conditions. At the optimal fabrication conditions, the sheet resistance of AgNWs on a PC film (PC-AgNW) was as small as 36.79 Ω sq(−1), which was only 3.17% deviation from that on a PET film (PET-AgNW). Furthermore, the optical transmittance of the PC-AgNW exceeded 88% over the visible range, and it was greater than that of the PET-AgNW. Notably, the sheet resistance of the PC-AgNW was almost constant after 50 taping and peeling cycles, indicating remarkable adhesion to the substrate. Furthermore, a capacitive touch sensor was fabricated using the PC-AgNW, and its switching signals were presented with and without finger touch. The Royal Society of Chemistry 2023-01-06 /pmc/articles/PMC9817082/ /pubmed/36688061 http://dx.doi.org/10.1039/d2ra05600c Text en This journal is © The Royal Society of Chemistry https://creativecommons.org/licenses/by/3.0/
spellingShingle Chemistry
Park, Yangkyu
Kim, Jae Pil
Kim, Wan Ho
Song, Young Hyun
Kim, Sunyoon
Jeong, Ho-Jung
Large-scale transfer of Ag nanowires from PET to PC film using a roll-to-roll UV lamination process for a capacitive touch sensor
title Large-scale transfer of Ag nanowires from PET to PC film using a roll-to-roll UV lamination process for a capacitive touch sensor
title_full Large-scale transfer of Ag nanowires from PET to PC film using a roll-to-roll UV lamination process for a capacitive touch sensor
title_fullStr Large-scale transfer of Ag nanowires from PET to PC film using a roll-to-roll UV lamination process for a capacitive touch sensor
title_full_unstemmed Large-scale transfer of Ag nanowires from PET to PC film using a roll-to-roll UV lamination process for a capacitive touch sensor
title_short Large-scale transfer of Ag nanowires from PET to PC film using a roll-to-roll UV lamination process for a capacitive touch sensor
title_sort large-scale transfer of ag nanowires from pet to pc film using a roll-to-roll uv lamination process for a capacitive touch sensor
topic Chemistry
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9817082/
https://www.ncbi.nlm.nih.gov/pubmed/36688061
http://dx.doi.org/10.1039/d2ra05600c
work_keys_str_mv AT parkyangkyu largescaletransferofagnanowiresfrompettopcfilmusingarolltorolluvlaminationprocessforacapacitivetouchsensor
AT kimjaepil largescaletransferofagnanowiresfrompettopcfilmusingarolltorolluvlaminationprocessforacapacitivetouchsensor
AT kimwanho largescaletransferofagnanowiresfrompettopcfilmusingarolltorolluvlaminationprocessforacapacitivetouchsensor
AT songyounghyun largescaletransferofagnanowiresfrompettopcfilmusingarolltorolluvlaminationprocessforacapacitivetouchsensor
AT kimsunyoon largescaletransferofagnanowiresfrompettopcfilmusingarolltorolluvlaminationprocessforacapacitivetouchsensor
AT jeonghojung largescaletransferofagnanowiresfrompettopcfilmusingarolltorolluvlaminationprocessforacapacitivetouchsensor