Cargando…
STSC-SNN: Spatio-Temporal Synaptic Connection with temporal convolution and attention for spiking neural networks
Spiking neural networks (SNNs), as one of the algorithmic models in neuromorphic computing, have gained a great deal of research attention owing to temporal information processing capability, low power consumption, and high biological plausibility. The potential to efficiently extract spatio-tempora...
Autores principales: | Yu, Chengting, Gu, Zheming, Li, Da, Wang, Gaoang, Wang, Aili, Li, Erping |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9817103/ https://www.ncbi.nlm.nih.gov/pubmed/36620452 http://dx.doi.org/10.3389/fnins.2022.1079357 |
Ejemplares similares
-
MAP-SNN: Mapping spike activities with multiplicity, adaptability, and plasticity into bio-plausible spiking neural networks
por: Yu, Chengting, et al.
Publicado: (2022) -
Inferring Synaptic Connectivity from Spatio-Temporal Spike Patterns
por: Van Bussel, Frank, et al.
Publicado: (2011) -
STCA-SNN: self-attention-based temporal-channel joint attention for spiking neural networks
por: Wu, Xiyan, et al.
Publicado: (2023) -
A Hardware Implementation of SNN-Based Spatio-Temporal Memory Model
por: Liu, Kefei, et al.
Publicado: (2019) -
Synaptic self-organization of spatio-temporal pattern selectivity
por: Dehghani-Habibabadi, Mohammad, et al.
Publicado: (2023)