Cargando…

Applying machine learning technologies to explore students’ learning features and performance prediction

To understand students’ learning behaviors, this study uses machine learning technologies to analyze the data of interactive learning environments, and then predicts students’ learning outcomes. This study adopted a variety of machine learning classification methods, quizzes, and programming system...

Descripción completa

Detalles Bibliográficos
Autores principales: Su, Yu-Sheng, Lin, Yu-Da, Liu, Tai-Quan
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Frontiers Media S.A. 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9817150/
https://www.ncbi.nlm.nih.gov/pubmed/36620438
http://dx.doi.org/10.3389/fnins.2022.1018005
Descripción
Sumario:To understand students’ learning behaviors, this study uses machine learning technologies to analyze the data of interactive learning environments, and then predicts students’ learning outcomes. This study adopted a variety of machine learning classification methods, quizzes, and programming system logs, found that students’ learning characteristics were correlated with their learning performance when they encountered similar programming practice. In this study, we used random forest (RF), support vector machine (SVM), logistic regression (LR), and neural network (NN) algorithms to predict whether students would submit on time for the course. Among them, the NN algorithm showed the best prediction results. Education-related data can be predicted by machine learning techniques, and different machine learning models with different hyperparameters can be used to obtain better results.