Cargando…
Dietary Supplementation of Capsaicin Enhances Productive and Reproductive Efficiency of Chinese Crossbred Buffaloes in Low Breeding Season
SIMPLE SUMMARY: Heat stress affects the productivity of exposed animals by lowering fertility-related aspects. This phenomenon is more pronounced in buffaloes, particularly during the low breeding season, as it is coupled with thermal assaults. Under such conditions, altered metabolic activity is ma...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9817864/ https://www.ncbi.nlm.nih.gov/pubmed/36611727 http://dx.doi.org/10.3390/ani13010118 |
Sumario: | SIMPLE SUMMARY: Heat stress affects the productivity of exposed animals by lowering fertility-related aspects. This phenomenon is more pronounced in buffaloes, particularly during the low breeding season, as it is coupled with thermal assaults. Under such conditions, altered metabolic activity is markedly noticed, affecting the production and reproduction of buffaloes. The obtained results revealed that the use of capsaicin is beneficial to improve milk yield and composition without altering the other metabolic process. Moreover, improved reproductive performance is achieved in buffaloes when capsaicin is supplemented prior to synchronization. ABSTRACT: The present study investigated the role of dietary capsaicin (CPS) supplementation on milk yield (liters/head) and milk composition (total solids, lactose, albumin, protein, fat, milk urea nitrogen (MUN), somatic cell count (SCC) and somatic cell score (SCS), serum metabolites (lipoprotein esterase (LPL) and aspartate aminotransferase (AST)), and reproductive physiology (follicular development, estrus response, ovulation and pregnancy) following synchronization during the low breeding season. One hundred (n = 100) crossbred buffaloes were randomly assigned to four dietary groups consisting of CPS supplementation dosages (0, 2, 4 or 6 mg/kg of total mixed ration; TMR) as CPS-0 (n = 26), CPS-2 (n = 22), CPS-4 (n = 25) and CPS-6 (n = 27), respectively, in a 30-day feed trial. The results revealed that the CPS-4 group of buffaloes had a better estrus rate (72%) along with improved (p < 0.05) ovulatory follicle diameter (13.8 mm), ovulation rate (68%) and pregnancy rate (48%) compared to other treatment groups. Milk yield improved (p < 0.05) in CPS-4 supplemented buffaloes after day 20 of the trial, comparatively. There was a significant effect (p < 0.05) of milk sampling day (day 30) on total milk solids, lactose, milk protein and MUN levels, whereas lactose, MUN, SCC and SCS were influenced by supplementation dosage (CPS-4). Glucose levels were affected in buffaloes by sampling time (artificial insemination (AI) and 50-day post-AI) and CPS-dose (CPS-4 and CPS-6), respectively. LPL level changed in CPS-2 and CPS-4 groups at AI time and 50 days after AI. In addition, the AST level was different in CPS-4 at AI time and 50 days after AI. Therefore, our data suggest that a medium dose (~4 mg/kg of TMR) of CPS provided a better response in the form of milk yield, milk composition, serum metabolites and reproductive performance in crossbred buffaloes during the low breeding season. |
---|