Cargando…

Squeeze-MNet: Precise Skin Cancer Detection Model for Low Computing IoT Devices Using Transfer Learning

SIMPLE SUMMARY: Skin cancer is a life-threatening condition. It is difficult to diagnose in its early stages; therefore, we proposed an easy-to-use telemedicine device to tackle skin cancer without expert intervention. The deep learning model automatically detects skin cancer patches on lesions with...

Descripción completa

Detalles Bibliográficos
Autores principales: Shinde, Rupali Kiran, Alam, Md. Shahinur, Hossain, Md. Biddut, Md Imtiaz, Shariar, Kim, JoonHyun, Padwal, Anuja Anil, Kim, Nam
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9817940/
https://www.ncbi.nlm.nih.gov/pubmed/36612010
http://dx.doi.org/10.3390/cancers15010012
Descripción
Sumario:SIMPLE SUMMARY: Skin cancer is a life-threatening condition. It is difficult to diagnose in its early stages; therefore, we proposed an easy-to-use telemedicine device to tackle skin cancer without expert intervention. The deep learning model automatically detects skin cancer patches on lesions with a credit-card-sized device named Raspberry Pi and a small camera. This paper also presents a digital hair removal algorithm to enhance the quality of medical images for better analysis by medical experts and AI methods. Our method does not need an expert operator; even ordinary people can use it with the instruction manual. It will be useful for developing countries or remote places when there is a scarcity of oncologists. ABSTRACT: Cancer remains a deadly disease. We developed a lightweight, accurate, general-purpose deep learning algorithm for skin cancer classification. Squeeze-MNet combines a Squeeze algorithm for digital hair removal during preprocessing and a MobileNet deep learning model with predefined weights. The Squeeze algorithm extracts important image features from the image, and the black-hat filter operation removes noise. The MobileNet model (with a dense neural network) was developed using the International Skin Imaging Collaboration (ISIC) dataset to fine-tune the model. The proposed model is lightweight; the prototype was tested on a Raspberry Pi 4 Internet of Things device with a Neo pixel 8-bit LED ring; a medical doctor validated the device. The average precision (AP) for benign and malignant diagnoses was 99.76% and 98.02%, respectively. Using our approach, the required dataset size decreased by 66%. The hair removal algorithm increased the accuracy of skin cancer detection to 99.36% with the ISIC dataset. The area under the receiver operating curve was 98.9%.