Cargando…
Squeeze-MNet: Precise Skin Cancer Detection Model for Low Computing IoT Devices Using Transfer Learning
SIMPLE SUMMARY: Skin cancer is a life-threatening condition. It is difficult to diagnose in its early stages; therefore, we proposed an easy-to-use telemedicine device to tackle skin cancer without expert intervention. The deep learning model automatically detects skin cancer patches on lesions with...
Autores principales: | Shinde, Rupali Kiran, Alam, Md. Shahinur, Hossain, Md. Biddut, Md Imtiaz, Shariar, Kim, JoonHyun, Padwal, Anuja Anil, Kim, Nam |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9817940/ https://www.ncbi.nlm.nih.gov/pubmed/36612010 http://dx.doi.org/10.3390/cancers15010012 |
Ejemplares similares
-
A Hybrid Residual Attention Convolutional Neural Network for Compressed Sensing Magnetic Resonance Image Reconstruction
por: Hossain, Md. Biddut, et al.
Publicado: (2023) -
Depth Estimation for Integral Imaging Microscopy Using a 3D–2D CNN with a Weighted Median Filter
por: Imtiaz, Shariar Md, et al.
Publicado: (2022) -
Intelligent IoT (IIoT) Device to Identifying Suspected COVID-19 Infections Using Sensor Fusion Algorithm and Real-Time Mask Detection Based on the Enhanced MobileNetV2 Model
por: Shinde, Rupali Kiran, et al.
Publicado: (2022) -
De-Aliasing and Accelerated Sparse Magnetic Resonance Image Reconstruction Using Fully Dense CNN with Attention Gates
por: Hossain, Md. Biddut, et al.
Publicado: (2022) -
Trajectory-Based Air-Writing Recognition Using Deep Neural Network and Depth Sensor
por: Alam, Md. Shahinur, et al.
Publicado: (2020)