Cargando…
Phytoplankton diversity and chemotaxonomy in contrasting North Pacific ecosystems
BACKGROUND: Phytoplankton is the base of majority of ocean ecosystems. It is responsible for half of the global primary production, and different phytoplankton taxa have a unique role in global biogeochemical cycles. In addition, phytoplankton abundance and diversity are highly susceptible to climat...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
PeerJ Inc.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9817951/ https://www.ncbi.nlm.nih.gov/pubmed/36620747 http://dx.doi.org/10.7717/peerj.14501 |
_version_ | 1784864866051293184 |
---|---|
author | Matek, Antonija Bosak, Sunčica Šupraha, Luka Neeley, Aimee Višić, Hrvoje Cetinić, Ivona Ljubešić, Zrinka |
author_facet | Matek, Antonija Bosak, Sunčica Šupraha, Luka Neeley, Aimee Višić, Hrvoje Cetinić, Ivona Ljubešić, Zrinka |
author_sort | Matek, Antonija |
collection | PubMed |
description | BACKGROUND: Phytoplankton is the base of majority of ocean ecosystems. It is responsible for half of the global primary production, and different phytoplankton taxa have a unique role in global biogeochemical cycles. In addition, phytoplankton abundance and diversity are highly susceptible to climate induced changes, hence monitoring of phytoplankton and its diversity is important and necessary. METHODS: Water samples for phytoplankton and photosynthetic pigment analyses were collected in boreal winter 2017, along transect in the North Pacific Subtropical Gyre (NPSG) and the California Current System (CCS). Phytoplankton community was analyzed using light and scanning electron microscopy and photosynthetic pigments by high-performance liquid chromatography. To describe distinct ecosystems, monthly average satellite data of MODIS Aqua Sea Surface temperature and Chlorophyll a concentration, as well as Apparent Visible Wavelength were used. RESULTS: A total of 207 taxa have been determined, mostly comprised of coccolithophores (35.5%), diatoms (25.2%) and dinoflagellates (19.5%) while cryptophytes, phytoflagellates and silicoflagellates were included in the group “others” (19.8%). Phytoplankton spatial distribution was distinct, indicating variable planktonic dispersal rates and specific adaptation to ecosystems. Dinoflagellates, and nano-scale coccolithophores dominated NPSG, while micro-scale diatoms, and cryptophytes prevailed in CCS. A clear split between CCS and NPSG is evident in dendogram visualising LINKTREE constrained binary divisive clustering analysis done on phytoplankton counts and pigment concentrations. Of all pigments determined, alloxanthin, zeaxanthin, divinyl chlorophyll b and lutein have highest correlation to phytoplankton counts. CONCLUSION: Combining chemotaxonomy and microscopy is an optimal method to determine phytoplankton diversity on a large-scale transect. Distinct communities between the two contrasting ecosystems of North Pacific reveal phytoplankton groups specific adaptations to trophic state, and support the hypothesis of shift from micro- to nano-scale taxa due to sea surface temperatures rising, favoring stratification and oligotrophic conditions. |
format | Online Article Text |
id | pubmed-9817951 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | PeerJ Inc. |
record_format | MEDLINE/PubMed |
spelling | pubmed-98179512023-01-07 Phytoplankton diversity and chemotaxonomy in contrasting North Pacific ecosystems Matek, Antonija Bosak, Sunčica Šupraha, Luka Neeley, Aimee Višić, Hrvoje Cetinić, Ivona Ljubešić, Zrinka PeerJ Biodiversity BACKGROUND: Phytoplankton is the base of majority of ocean ecosystems. It is responsible for half of the global primary production, and different phytoplankton taxa have a unique role in global biogeochemical cycles. In addition, phytoplankton abundance and diversity are highly susceptible to climate induced changes, hence monitoring of phytoplankton and its diversity is important and necessary. METHODS: Water samples for phytoplankton and photosynthetic pigment analyses were collected in boreal winter 2017, along transect in the North Pacific Subtropical Gyre (NPSG) and the California Current System (CCS). Phytoplankton community was analyzed using light and scanning electron microscopy and photosynthetic pigments by high-performance liquid chromatography. To describe distinct ecosystems, monthly average satellite data of MODIS Aqua Sea Surface temperature and Chlorophyll a concentration, as well as Apparent Visible Wavelength were used. RESULTS: A total of 207 taxa have been determined, mostly comprised of coccolithophores (35.5%), diatoms (25.2%) and dinoflagellates (19.5%) while cryptophytes, phytoflagellates and silicoflagellates were included in the group “others” (19.8%). Phytoplankton spatial distribution was distinct, indicating variable planktonic dispersal rates and specific adaptation to ecosystems. Dinoflagellates, and nano-scale coccolithophores dominated NPSG, while micro-scale diatoms, and cryptophytes prevailed in CCS. A clear split between CCS and NPSG is evident in dendogram visualising LINKTREE constrained binary divisive clustering analysis done on phytoplankton counts and pigment concentrations. Of all pigments determined, alloxanthin, zeaxanthin, divinyl chlorophyll b and lutein have highest correlation to phytoplankton counts. CONCLUSION: Combining chemotaxonomy and microscopy is an optimal method to determine phytoplankton diversity on a large-scale transect. Distinct communities between the two contrasting ecosystems of North Pacific reveal phytoplankton groups specific adaptations to trophic state, and support the hypothesis of shift from micro- to nano-scale taxa due to sea surface temperatures rising, favoring stratification and oligotrophic conditions. PeerJ Inc. 2023-01-03 /pmc/articles/PMC9817951/ /pubmed/36620747 http://dx.doi.org/10.7717/peerj.14501 Text en ©2023 Matek et al. https://creativecommons.org/licenses/by/4.0/This is an open access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, reproduction and adaptation in any medium and for any purpose provided that it is properly attributed. For attribution, the original author(s), title, publication source (PeerJ) and either DOI or URL of the article must be cited. |
spellingShingle | Biodiversity Matek, Antonija Bosak, Sunčica Šupraha, Luka Neeley, Aimee Višić, Hrvoje Cetinić, Ivona Ljubešić, Zrinka Phytoplankton diversity and chemotaxonomy in contrasting North Pacific ecosystems |
title | Phytoplankton diversity and chemotaxonomy in contrasting North Pacific ecosystems |
title_full | Phytoplankton diversity and chemotaxonomy in contrasting North Pacific ecosystems |
title_fullStr | Phytoplankton diversity and chemotaxonomy in contrasting North Pacific ecosystems |
title_full_unstemmed | Phytoplankton diversity and chemotaxonomy in contrasting North Pacific ecosystems |
title_short | Phytoplankton diversity and chemotaxonomy in contrasting North Pacific ecosystems |
title_sort | phytoplankton diversity and chemotaxonomy in contrasting north pacific ecosystems |
topic | Biodiversity |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9817951/ https://www.ncbi.nlm.nih.gov/pubmed/36620747 http://dx.doi.org/10.7717/peerj.14501 |
work_keys_str_mv | AT matekantonija phytoplanktondiversityandchemotaxonomyincontrastingnorthpacificecosystems AT bosaksuncica phytoplanktondiversityandchemotaxonomyincontrastingnorthpacificecosystems AT suprahaluka phytoplanktondiversityandchemotaxonomyincontrastingnorthpacificecosystems AT neeleyaimee phytoplanktondiversityandchemotaxonomyincontrastingnorthpacificecosystems AT visichrvoje phytoplanktondiversityandchemotaxonomyincontrastingnorthpacificecosystems AT cetinicivona phytoplanktondiversityandchemotaxonomyincontrastingnorthpacificecosystems AT ljubesiczrinka phytoplanktondiversityandchemotaxonomyincontrastingnorthpacificecosystems |