Cargando…
Store-Operated Calcium Entry in Breast Cancer Cells Is Insensitive to Orai1 and STIM1 N-Linked Glycosylation
SIMPLE SUMMARY: Breast cancer cells exhibit several differences in store-operated Ca(2+) entry (SOCE) as compared to non-tumoral breast epithelial cells due to altered expression and post-translational modification of STIM proteins and Orai channels, as well as their modulators. The aim of this stud...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9818078/ https://www.ncbi.nlm.nih.gov/pubmed/36612199 http://dx.doi.org/10.3390/cancers15010203 |
_version_ | 1784864896441122816 |
---|---|
author | Sanchez-Collado, Jose Nieto-Felipe, Joel Jardin, Isaac Bhardwaj, Rajesh Berna-Erro, Alejandro Salido, Gines M. Smani, Tarik Hediger, Matthias A Lopez, Jose J. Rosado, Juan A. |
author_facet | Sanchez-Collado, Jose Nieto-Felipe, Joel Jardin, Isaac Bhardwaj, Rajesh Berna-Erro, Alejandro Salido, Gines M. Smani, Tarik Hediger, Matthias A Lopez, Jose J. Rosado, Juan A. |
author_sort | Sanchez-Collado, Jose |
collection | PubMed |
description | SIMPLE SUMMARY: Breast cancer cells exhibit several differences in store-operated Ca(2+) entry (SOCE) as compared to non-tumoral breast epithelial cells due to altered expression and post-translational modification of STIM proteins and Orai channels, as well as their modulators. The aim of this study was to analyze Orai1 and STIM1 N-linked glycosylation in SOCE in breast cancer cells and to ascertain the potential functional relevance of this post-translational modification in the development of cancer hallmarks. Using glycosylation-deficient STIM1 and Orai1 mutants we have found SOCE in breast cancer cells is insensitive to N-linked glycosylation of these proteins, a mechanism that might be relevant to evade apoptosis. ABSTRACT: N-linked glycosylation is a post-translational modification that affects protein function, structure, and interaction with other proteins. The store-operated Ca(2+) entry (SOCE) core proteins, Orai1 and STIM1, exhibit N-glycosylation consensus motifs. Abnormal SOCE has been associated to a number of disorders, including cancer, and alterations in Orai1 glycosylation have been related to cancer invasiveness and metastasis. Here we show that treatment of non-tumoral breast epithelial cells with tunicamycin attenuates SOCE. Meanwhile, tunicamycin was without effect on SOCE in luminal MCF7 and triple negative breast cancer (TNBC) MDA-MB-231 cells. Ca(2+) imaging experiments revealed that expression of the glycosylation-deficient Orai1 mutant (Orai1N223A) did not alter SOCE in MCF10A, MCF7 and MDA-MB-231 cells. However, expression of the non-glycosylable STIM1 mutant (STIM1N131/171Q) significantly attenuated SOCE in MCF10A cells but was without effect in SOCE in MCF7 and MDA-MB-231 cells. In non-tumoral cells impairment of STIM1 N-linked glycosylation attenuated thapsigargin (TG)-induced caspase-3 activation while in breast cancer cells, which exhibit a smaller caspase-3 activity in response to TG, expression of the non-glycosylable STIM1 mutant (STIM1N131/171Q) was without effect on TG-evoked caspase-3 activation. Summarizing, STIM1 N-linked glycosylation is essential for full SOCE activation in non-tumoral breast epithelial cells; by contrast, SOCE in breast cancer MCF7 and MDA-MB-231 cells is insensitive to Orai1 and STIM1 N-linked glycosylation, and this event might participate in the development of apoptosis resistance. |
format | Online Article Text |
id | pubmed-9818078 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-98180782023-01-07 Store-Operated Calcium Entry in Breast Cancer Cells Is Insensitive to Orai1 and STIM1 N-Linked Glycosylation Sanchez-Collado, Jose Nieto-Felipe, Joel Jardin, Isaac Bhardwaj, Rajesh Berna-Erro, Alejandro Salido, Gines M. Smani, Tarik Hediger, Matthias A Lopez, Jose J. Rosado, Juan A. Cancers (Basel) Article SIMPLE SUMMARY: Breast cancer cells exhibit several differences in store-operated Ca(2+) entry (SOCE) as compared to non-tumoral breast epithelial cells due to altered expression and post-translational modification of STIM proteins and Orai channels, as well as their modulators. The aim of this study was to analyze Orai1 and STIM1 N-linked glycosylation in SOCE in breast cancer cells and to ascertain the potential functional relevance of this post-translational modification in the development of cancer hallmarks. Using glycosylation-deficient STIM1 and Orai1 mutants we have found SOCE in breast cancer cells is insensitive to N-linked glycosylation of these proteins, a mechanism that might be relevant to evade apoptosis. ABSTRACT: N-linked glycosylation is a post-translational modification that affects protein function, structure, and interaction with other proteins. The store-operated Ca(2+) entry (SOCE) core proteins, Orai1 and STIM1, exhibit N-glycosylation consensus motifs. Abnormal SOCE has been associated to a number of disorders, including cancer, and alterations in Orai1 glycosylation have been related to cancer invasiveness and metastasis. Here we show that treatment of non-tumoral breast epithelial cells with tunicamycin attenuates SOCE. Meanwhile, tunicamycin was without effect on SOCE in luminal MCF7 and triple negative breast cancer (TNBC) MDA-MB-231 cells. Ca(2+) imaging experiments revealed that expression of the glycosylation-deficient Orai1 mutant (Orai1N223A) did not alter SOCE in MCF10A, MCF7 and MDA-MB-231 cells. However, expression of the non-glycosylable STIM1 mutant (STIM1N131/171Q) significantly attenuated SOCE in MCF10A cells but was without effect in SOCE in MCF7 and MDA-MB-231 cells. In non-tumoral cells impairment of STIM1 N-linked glycosylation attenuated thapsigargin (TG)-induced caspase-3 activation while in breast cancer cells, which exhibit a smaller caspase-3 activity in response to TG, expression of the non-glycosylable STIM1 mutant (STIM1N131/171Q) was without effect on TG-evoked caspase-3 activation. Summarizing, STIM1 N-linked glycosylation is essential for full SOCE activation in non-tumoral breast epithelial cells; by contrast, SOCE in breast cancer MCF7 and MDA-MB-231 cells is insensitive to Orai1 and STIM1 N-linked glycosylation, and this event might participate in the development of apoptosis resistance. MDPI 2022-12-29 /pmc/articles/PMC9818078/ /pubmed/36612199 http://dx.doi.org/10.3390/cancers15010203 Text en © 2022 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Sanchez-Collado, Jose Nieto-Felipe, Joel Jardin, Isaac Bhardwaj, Rajesh Berna-Erro, Alejandro Salido, Gines M. Smani, Tarik Hediger, Matthias A Lopez, Jose J. Rosado, Juan A. Store-Operated Calcium Entry in Breast Cancer Cells Is Insensitive to Orai1 and STIM1 N-Linked Glycosylation |
title | Store-Operated Calcium Entry in Breast Cancer Cells Is Insensitive to Orai1 and STIM1 N-Linked Glycosylation |
title_full | Store-Operated Calcium Entry in Breast Cancer Cells Is Insensitive to Orai1 and STIM1 N-Linked Glycosylation |
title_fullStr | Store-Operated Calcium Entry in Breast Cancer Cells Is Insensitive to Orai1 and STIM1 N-Linked Glycosylation |
title_full_unstemmed | Store-Operated Calcium Entry in Breast Cancer Cells Is Insensitive to Orai1 and STIM1 N-Linked Glycosylation |
title_short | Store-Operated Calcium Entry in Breast Cancer Cells Is Insensitive to Orai1 and STIM1 N-Linked Glycosylation |
title_sort | store-operated calcium entry in breast cancer cells is insensitive to orai1 and stim1 n-linked glycosylation |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9818078/ https://www.ncbi.nlm.nih.gov/pubmed/36612199 http://dx.doi.org/10.3390/cancers15010203 |
work_keys_str_mv | AT sanchezcolladojose storeoperatedcalciumentryinbreastcancercellsisinsensitivetoorai1andstim1nlinkedglycosylation AT nietofelipejoel storeoperatedcalciumentryinbreastcancercellsisinsensitivetoorai1andstim1nlinkedglycosylation AT jardinisaac storeoperatedcalciumentryinbreastcancercellsisinsensitivetoorai1andstim1nlinkedglycosylation AT bhardwajrajesh storeoperatedcalciumentryinbreastcancercellsisinsensitivetoorai1andstim1nlinkedglycosylation AT bernaerroalejandro storeoperatedcalciumentryinbreastcancercellsisinsensitivetoorai1andstim1nlinkedglycosylation AT salidoginesm storeoperatedcalciumentryinbreastcancercellsisinsensitivetoorai1andstim1nlinkedglycosylation AT smanitarik storeoperatedcalciumentryinbreastcancercellsisinsensitivetoorai1andstim1nlinkedglycosylation AT hedigermatthiasa storeoperatedcalciumentryinbreastcancercellsisinsensitivetoorai1andstim1nlinkedglycosylation AT lopezjosej storeoperatedcalciumentryinbreastcancercellsisinsensitivetoorai1andstim1nlinkedglycosylation AT rosadojuana storeoperatedcalciumentryinbreastcancercellsisinsensitivetoorai1andstim1nlinkedglycosylation |