Cargando…

Effects of Microbeam Irradiation on Rodent Esophageal Smooth Muscle Contraction

Background: High-dose-rate radiotherapy has shown promising results with respect to normal tissue preservation. We developed an ex vivo model to study the physiological effects of experimental radiotherapy in the rodent esophageal smooth muscle. Methods: We assessed the physiological parameters of t...

Descripción completa

Detalles Bibliográficos
Autores principales: Frerker, Bernd, Fiedler, Stefan, Kirschstein, Timo, Lange, Falko, Porath, Katrin, Sellmann, Tina, Kutzner, Leonie, Wilde, Fabian, Moosmann, Julian, Köhling, Rüdiger, Hildebrandt, Guido, Schültke, Elisabeth
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9818134/
https://www.ncbi.nlm.nih.gov/pubmed/36611969
http://dx.doi.org/10.3390/cells12010176
Descripción
Sumario:Background: High-dose-rate radiotherapy has shown promising results with respect to normal tissue preservation. We developed an ex vivo model to study the physiological effects of experimental radiotherapy in the rodent esophageal smooth muscle. Methods: We assessed the physiological parameters of the esophageal function in ex vivo preparations of the proximal, middle, and distal segments in the organ bath. High-dose-rate synchrotron irradiation was conducted using both the microbeam irradiation (MBI) technique with peak doses greater than 200 Gy and broadbeam irradiation (BBI) with doses ranging between 3.5–4 Gy. Results: Neither MBI nor BBI affected the function of the contractile apparatus. While peak latency and maximal force change were not affected in the BBI group, and no changes were seen in the proximal esophagus segments after MBI, a significant increase in peak latency and a decrease in maximal force change was observed in the middle and distal esophageal segments. Conclusion: No severe changes in physiological parameters of esophageal contraction were determined after high-dose-rate radiotherapy in our model, but our results indicate a delayed esophageal function. From the clinical perspective, the observed increase in peak latency and decreased maximal force change may indicate delayed esophageal transit.