Cargando…

Effect of Tea Polyphenols on the Storage Stability of Non-Fermented Frozen Dough: Protein Structures and State of Water

The usage of tea polyphenols (TPs) as a natural food additive into non-fermented frozen dough (NFFD) has rarely been investigated, and results have been controversial. Hence, this study investigated the effect of TPs at various levels (0, 0.5, 1, and 2%) on the quality of NFFD stored from 0 to 4 wee...

Descripción completa

Detalles Bibliográficos
Autores principales: Zheng, Kai, Chen, Zhehan, Fu, Yang, Chen, Lei, Zhu, Xiangwei, Chen, Xi, Ding, Wenping
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9818151/
https://www.ncbi.nlm.nih.gov/pubmed/36613295
http://dx.doi.org/10.3390/foods12010080
Descripción
Sumario:The usage of tea polyphenols (TPs) as a natural food additive into non-fermented frozen dough (NFFD) has rarely been investigated, and results have been controversial. Hence, this study investigated the effect of TPs at various levels (0, 0.5, 1, and 2%) on the quality of NFFD stored from 0 to 4 weeks. The rheological characteristics, water state, protein, and its microstructure were analyzed by DSC, LF-NMR, SDS-PAGE, FT-IR, and SEM, respectively. Results showed that the 0.5% TP group delayed the deterioration of protein and inhibited the water migration in dough throughout the whole frozen storage period. In addition, the 0.5% TP group enhanced the rheological properties of NFFD and stabilized the sulfhydryl content and the secondary structure in the gluten network. On the contrary, opposite phenomena were found in the 1 and 2% TP groups, which might be due to the induction of excess hydroxyl groups from TPs. In conclusion, our results suggested that a proper addition of TPs, but not an excessive amount (>1%), exhibited beneficial effects in maintaining the quality of NFFD during the 4-week frozen storage. Moreover, this paper elucidated the mechanism of TPs in influencing the protein structure and water state of NFFD during storage and provided new insight into its application in dough-based foods.