Cargando…
Brain Stroke Classification via Machine Learning Algorithms Trained with a Linearized Scattering Operator
This paper proposes an efficient and fast method to create large datasets for machine learning algorithms applied to brain stroke classification via microwave imaging systems. The proposed method is based on the distorted Born approximation and linearization of the scattering operator, in order to m...
Autores principales: | Mariano, Valeria, Tobon Vasquez, Jorge A., Casu, Mario R., Vipiana, Francesca |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9818173/ https://www.ncbi.nlm.nih.gov/pubmed/36611315 http://dx.doi.org/10.3390/diagnostics13010023 |
Ejemplares similares
-
A Novel Discretization Procedure in the CSI-FEM Algorithm for Brain Stroke Microwave Imaging
por: Mariano, Valeria, et al.
Publicado: (2022) -
Experimental Validation of a Microwave System for Brain Stroke 3-D Imaging
por: Rodriguez-Duarte, David O., et al.
Publicado: (2021) -
A Prototype Microwave System for 3D Brain Stroke Imaging
por: Tobon Vasquez, Jorge A., et al.
Publicado: (2020) -
Open-Ended Coaxial Probe Measurements of Complex Dielectric Permittivity in Diesel-Contaminated Soil during Bioremediation
por: Vergnano, Andrea, et al.
Publicado: (2020) -
Causative Classification of Ischemic Stroke by the Machine Learning Algorithm Random Forests
por: Wang, Jianan, et al.
Publicado: (2022)