Cargando…
Deciphering Tumour Microenvironment of Liver Cancer through Deconvolution of Bulk RNA-Seq Data with Single-Cell Atlas
SIMPLE SUMMARY: ScRNA-seq is a powerful tool for investigating the cancer microenvironment, but the cost of analysing every scientific scenario is prohibitive. Fortunately, deconvolution of bulk RNA-seq data with scRNA-seq cell atlas reference datasets provides a cheaper strategy. In this study, we...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9818189/ https://www.ncbi.nlm.nih.gov/pubmed/36612149 http://dx.doi.org/10.3390/cancers15010153 |
Sumario: | SIMPLE SUMMARY: ScRNA-seq is a powerful tool for investigating the cancer microenvironment, but the cost of analysing every scientific scenario is prohibitive. Fortunately, deconvolution of bulk RNA-seq data with scRNA-seq cell atlas reference datasets provides a cheaper strategy. In this study, we validated the feasibility of deciphering the microenvironment of liver cancer through the estimation of cell fractions with Cibersortx and scRNA-seq atlas reference datasets. Five cell types are associated with patient outcomes, showing that deconvolution is a useful method for characterising the tumour microenvironment. ABSTRACT: Liver cancers give rise to a heavy burden on healthcare worldwide. Understanding the tumour microenvironment (TME) underpins the development of precision therapy. Single-cell RNA sequencing (scRNA-seq) technology has generated high-quality cell atlases of the TME, but its wider application faces enormous costs for various clinical circumstances. Fortunately, a variety of deconvolution algorithms can instead repurpose bulk RNA-seq data, alleviating the need for generating scRNA-seq datasets. In this study, we reviewed major public omics databases for relevance in this study and utilised eight RNA-seqs and one microarray dataset from clinical studies. To decipher the TME of liver cancer, we estimated the fractions of liver cell components by deconvoluting the samples with Cibersortx using three reference scRNA-seq atlases. We also confirmed that Cibersortx can accurately deconvolute cell types/subtypes of interest. Compared with non-tumorous liver, liver cancers showed multiple decreased cell types forming normal liver microarchitecture, as well as elevated cell types involved in fibrogenesis, abnormal angiogenesis, and disturbed immune responses. Survival analysis shows that the fractions of five cell types/subtypes significantly correlated with patient outcomes, indicating potential therapeutic targets. Therefore, deconvolution of bulk RNA-seq data with scRNA-seq atlas references can be a useful tool to help understand the TME. |
---|