Cargando…
Characterizing Relevant MicroRNA Editing Sites in Parkinson’s Disease
MicroRNAs (miRNAs) are extensively edited in human brains. However, the functional relevance of the miRNA editome is largely unknown in Parkinson’s disease (PD). By analyzing small RNA sequencing profiles of brain tissues of 43 PD patients and 88 normal controls, we found that the editing levels of...
Autores principales: | , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9818192/ https://www.ncbi.nlm.nih.gov/pubmed/36611869 http://dx.doi.org/10.3390/cells12010075 |
_version_ | 1784864924911009792 |
---|---|
author | Lu, Chenyu Ren, Shuchao Xie, Wenping Zhao, Zhigang Wu, Xingwang Guo, Shiyong Suo, Angbaji Zhou, Nan Yang, Jun Wu, Shuai Zheng, Yun |
author_facet | Lu, Chenyu Ren, Shuchao Xie, Wenping Zhao, Zhigang Wu, Xingwang Guo, Shiyong Suo, Angbaji Zhou, Nan Yang, Jun Wu, Shuai Zheng, Yun |
author_sort | Lu, Chenyu |
collection | PubMed |
description | MicroRNAs (miRNAs) are extensively edited in human brains. However, the functional relevance of the miRNA editome is largely unknown in Parkinson’s disease (PD). By analyzing small RNA sequencing profiles of brain tissues of 43 PD patients and 88 normal controls, we found that the editing levels of five A-to-I and two C-to-U editing sites are significantly correlated with the ages of normal controls, which is disrupted in PD patients. We totally identified 362 miRNA editing sites with significantly different editing levels in prefrontal cortices of PD patients (PD-PC) compared to results of normal controls. We experimentally validated that A-to-I edited miR-497-5p, with significantly higher expression levels in PD-PC compared to normal controls, directly represses OPA1 and VAPB. Furthermore, overexpression of A-to-I edited miR-497-5p downregulates OPA1 and VAPB in two cell lines, and inhibits proliferation of glioma cells. These results suggest that the hyperediting of miR-497-5p in PD contributes to enhanced progressive neurodegeneration of PD patients. Our results provide new insights into the mechanistic understanding, novel diagnostics, and therapeutic clues of PD. |
format | Online Article Text |
id | pubmed-9818192 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-98181922023-01-07 Characterizing Relevant MicroRNA Editing Sites in Parkinson’s Disease Lu, Chenyu Ren, Shuchao Xie, Wenping Zhao, Zhigang Wu, Xingwang Guo, Shiyong Suo, Angbaji Zhou, Nan Yang, Jun Wu, Shuai Zheng, Yun Cells Article MicroRNAs (miRNAs) are extensively edited in human brains. However, the functional relevance of the miRNA editome is largely unknown in Parkinson’s disease (PD). By analyzing small RNA sequencing profiles of brain tissues of 43 PD patients and 88 normal controls, we found that the editing levels of five A-to-I and two C-to-U editing sites are significantly correlated with the ages of normal controls, which is disrupted in PD patients. We totally identified 362 miRNA editing sites with significantly different editing levels in prefrontal cortices of PD patients (PD-PC) compared to results of normal controls. We experimentally validated that A-to-I edited miR-497-5p, with significantly higher expression levels in PD-PC compared to normal controls, directly represses OPA1 and VAPB. Furthermore, overexpression of A-to-I edited miR-497-5p downregulates OPA1 and VAPB in two cell lines, and inhibits proliferation of glioma cells. These results suggest that the hyperediting of miR-497-5p in PD contributes to enhanced progressive neurodegeneration of PD patients. Our results provide new insights into the mechanistic understanding, novel diagnostics, and therapeutic clues of PD. MDPI 2022-12-24 /pmc/articles/PMC9818192/ /pubmed/36611869 http://dx.doi.org/10.3390/cells12010075 Text en © 2022 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Lu, Chenyu Ren, Shuchao Xie, Wenping Zhao, Zhigang Wu, Xingwang Guo, Shiyong Suo, Angbaji Zhou, Nan Yang, Jun Wu, Shuai Zheng, Yun Characterizing Relevant MicroRNA Editing Sites in Parkinson’s Disease |
title | Characterizing Relevant MicroRNA Editing Sites in Parkinson’s Disease |
title_full | Characterizing Relevant MicroRNA Editing Sites in Parkinson’s Disease |
title_fullStr | Characterizing Relevant MicroRNA Editing Sites in Parkinson’s Disease |
title_full_unstemmed | Characterizing Relevant MicroRNA Editing Sites in Parkinson’s Disease |
title_short | Characterizing Relevant MicroRNA Editing Sites in Parkinson’s Disease |
title_sort | characterizing relevant microrna editing sites in parkinson’s disease |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9818192/ https://www.ncbi.nlm.nih.gov/pubmed/36611869 http://dx.doi.org/10.3390/cells12010075 |
work_keys_str_mv | AT luchenyu characterizingrelevantmicrornaeditingsitesinparkinsonsdisease AT renshuchao characterizingrelevantmicrornaeditingsitesinparkinsonsdisease AT xiewenping characterizingrelevantmicrornaeditingsitesinparkinsonsdisease AT zhaozhigang characterizingrelevantmicrornaeditingsitesinparkinsonsdisease AT wuxingwang characterizingrelevantmicrornaeditingsitesinparkinsonsdisease AT guoshiyong characterizingrelevantmicrornaeditingsitesinparkinsonsdisease AT suoangbaji characterizingrelevantmicrornaeditingsitesinparkinsonsdisease AT zhounan characterizingrelevantmicrornaeditingsitesinparkinsonsdisease AT yangjun characterizingrelevantmicrornaeditingsitesinparkinsonsdisease AT wushuai characterizingrelevantmicrornaeditingsitesinparkinsonsdisease AT zhengyun characterizingrelevantmicrornaeditingsitesinparkinsonsdisease |