Cargando…

Impact of Mitochondrial A3243G Heteroplasmy on Mitochondrial Bioenergetics and Dynamics of Directly Reprogrammed MELAS Neurons

The MELAS syndrome primarily affecting the CNS is mainly caused by the m.A3243G mutation. The heteroplasmy in different tissues affects the phenotypic spectrum, yet the impact of various levels of m.A3243G heteroplasmy on CNS remains elusive due to the lack of a proper neuronal model harboring m.A32...

Descripción completa

Detalles Bibliográficos
Autores principales: Lin, Dar-Shong, Huang, Yu-Wen, Ho, Che-Sheng, Huang, Tung-Sun, Lee, Tsung-Han, Wu, Tsu-Yen, Huang, Zon-Darr, Wang, Tuan-Jen
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9818214/
https://www.ncbi.nlm.nih.gov/pubmed/36611807
http://dx.doi.org/10.3390/cells12010015
_version_ 1784864930280767488
author Lin, Dar-Shong
Huang, Yu-Wen
Ho, Che-Sheng
Huang, Tung-Sun
Lee, Tsung-Han
Wu, Tsu-Yen
Huang, Zon-Darr
Wang, Tuan-Jen
author_facet Lin, Dar-Shong
Huang, Yu-Wen
Ho, Che-Sheng
Huang, Tung-Sun
Lee, Tsung-Han
Wu, Tsu-Yen
Huang, Zon-Darr
Wang, Tuan-Jen
author_sort Lin, Dar-Shong
collection PubMed
description The MELAS syndrome primarily affecting the CNS is mainly caused by the m.A3243G mutation. The heteroplasmy in different tissues affects the phenotypic spectrum, yet the impact of various levels of m.A3243G heteroplasmy on CNS remains elusive due to the lack of a proper neuronal model harboring m.A3243G mutation. We generated induced neurons (iNs) through the direct reprogramming of MELAS patients, with derived fibroblasts harboring high (>95%), intermediate (68%), and low (20%) m.A3243G mutation. iNs demonstrated neuronal morphology with neurite outgrowth, branching, and dendritic spines. The heteroplasmy and deficiency of respiratory chain complexes were retained in MELAS iNs. High heteroplasmy elicited the elevation in ROS levels and the disruption of mitochondrial membrane potential. Furthermore, high and intermediate heteroplasmy led to the impairment of mitochondrial bioenergetics and a change in mitochondrial dynamics toward the fission and fragmentation of mitochondria, with a reduction in mitochondrial networks. Moreover, iNs derived from aged individuals manifested with mitochondrial fission. These results help us in understanding the impact of various heteroplasmic levels on mitochondrial bioenergetics and mitochondrial dynamics in neurons as the underlying pathomechanism of neurological manifestations of MELAS syndrome. Furthermore, these findings provide targets for further pharmacological approaches of mitochondrial diseases and validate iNs as a reliable platform for studies in neuronal aspects of aging, neurodegenerative disorders, and mitochondrial diseases.
format Online
Article
Text
id pubmed-9818214
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-98182142023-01-07 Impact of Mitochondrial A3243G Heteroplasmy on Mitochondrial Bioenergetics and Dynamics of Directly Reprogrammed MELAS Neurons Lin, Dar-Shong Huang, Yu-Wen Ho, Che-Sheng Huang, Tung-Sun Lee, Tsung-Han Wu, Tsu-Yen Huang, Zon-Darr Wang, Tuan-Jen Cells Article The MELAS syndrome primarily affecting the CNS is mainly caused by the m.A3243G mutation. The heteroplasmy in different tissues affects the phenotypic spectrum, yet the impact of various levels of m.A3243G heteroplasmy on CNS remains elusive due to the lack of a proper neuronal model harboring m.A3243G mutation. We generated induced neurons (iNs) through the direct reprogramming of MELAS patients, with derived fibroblasts harboring high (>95%), intermediate (68%), and low (20%) m.A3243G mutation. iNs demonstrated neuronal morphology with neurite outgrowth, branching, and dendritic spines. The heteroplasmy and deficiency of respiratory chain complexes were retained in MELAS iNs. High heteroplasmy elicited the elevation in ROS levels and the disruption of mitochondrial membrane potential. Furthermore, high and intermediate heteroplasmy led to the impairment of mitochondrial bioenergetics and a change in mitochondrial dynamics toward the fission and fragmentation of mitochondria, with a reduction in mitochondrial networks. Moreover, iNs derived from aged individuals manifested with mitochondrial fission. These results help us in understanding the impact of various heteroplasmic levels on mitochondrial bioenergetics and mitochondrial dynamics in neurons as the underlying pathomechanism of neurological manifestations of MELAS syndrome. Furthermore, these findings provide targets for further pharmacological approaches of mitochondrial diseases and validate iNs as a reliable platform for studies in neuronal aspects of aging, neurodegenerative disorders, and mitochondrial diseases. MDPI 2022-12-21 /pmc/articles/PMC9818214/ /pubmed/36611807 http://dx.doi.org/10.3390/cells12010015 Text en © 2022 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Lin, Dar-Shong
Huang, Yu-Wen
Ho, Che-Sheng
Huang, Tung-Sun
Lee, Tsung-Han
Wu, Tsu-Yen
Huang, Zon-Darr
Wang, Tuan-Jen
Impact of Mitochondrial A3243G Heteroplasmy on Mitochondrial Bioenergetics and Dynamics of Directly Reprogrammed MELAS Neurons
title Impact of Mitochondrial A3243G Heteroplasmy on Mitochondrial Bioenergetics and Dynamics of Directly Reprogrammed MELAS Neurons
title_full Impact of Mitochondrial A3243G Heteroplasmy on Mitochondrial Bioenergetics and Dynamics of Directly Reprogrammed MELAS Neurons
title_fullStr Impact of Mitochondrial A3243G Heteroplasmy on Mitochondrial Bioenergetics and Dynamics of Directly Reprogrammed MELAS Neurons
title_full_unstemmed Impact of Mitochondrial A3243G Heteroplasmy on Mitochondrial Bioenergetics and Dynamics of Directly Reprogrammed MELAS Neurons
title_short Impact of Mitochondrial A3243G Heteroplasmy on Mitochondrial Bioenergetics and Dynamics of Directly Reprogrammed MELAS Neurons
title_sort impact of mitochondrial a3243g heteroplasmy on mitochondrial bioenergetics and dynamics of directly reprogrammed melas neurons
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9818214/
https://www.ncbi.nlm.nih.gov/pubmed/36611807
http://dx.doi.org/10.3390/cells12010015
work_keys_str_mv AT lindarshong impactofmitochondriala3243gheteroplasmyonmitochondrialbioenergeticsanddynamicsofdirectlyreprogrammedmelasneurons
AT huangyuwen impactofmitochondriala3243gheteroplasmyonmitochondrialbioenergeticsanddynamicsofdirectlyreprogrammedmelasneurons
AT hochesheng impactofmitochondriala3243gheteroplasmyonmitochondrialbioenergeticsanddynamicsofdirectlyreprogrammedmelasneurons
AT huangtungsun impactofmitochondriala3243gheteroplasmyonmitochondrialbioenergeticsanddynamicsofdirectlyreprogrammedmelasneurons
AT leetsunghan impactofmitochondriala3243gheteroplasmyonmitochondrialbioenergeticsanddynamicsofdirectlyreprogrammedmelasneurons
AT wutsuyen impactofmitochondriala3243gheteroplasmyonmitochondrialbioenergeticsanddynamicsofdirectlyreprogrammedmelasneurons
AT huangzondarr impactofmitochondriala3243gheteroplasmyonmitochondrialbioenergeticsanddynamicsofdirectlyreprogrammedmelasneurons
AT wangtuanjen impactofmitochondriala3243gheteroplasmyonmitochondrialbioenergeticsanddynamicsofdirectlyreprogrammedmelasneurons