Cargando…

The Effects of Sous Vide, Microwave Cooking, and Stewing on Some Quality Criteria of Goose Meat

Background: Heat treatment methods including frying (with and without fat or oil), deep frying, oven roasting, grilling, charcoal roasting, broiling, steaming, and microwave cooking promote a cascade of adverse changes in the functional properties of meat, including protein fraction, lipid oxidation...

Descripción completa

Detalles Bibliográficos
Autores principales: Wereńska, Monika, Haraf, Gabriela, Okruszek, Andrzej, Marcinkowska, Weronika, Wołoszyn, Janina
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9818254/
https://www.ncbi.nlm.nih.gov/pubmed/36613346
http://dx.doi.org/10.3390/foods12010129
Descripción
Sumario:Background: Heat treatment methods including frying (with and without fat or oil), deep frying, oven roasting, grilling, charcoal roasting, broiling, steaming, and microwave cooking promote a cascade of adverse changes in the functional properties of meat, including protein fraction, lipid oxidation, and loss of some vitamins and mineral compounds. The aim of this study was to evaluate the influence of three cooking methods (sous vide (SV), microwave (M) cooking, and stewing (S)) on the basic chemical composition, cholesterol content, energy value, mineral concentration, and retention coefficients in goose meat. Methods: Basic chemical composition and mineral analysis were determined using AOAC methods. Total cholesterol content was established using the HPLC method. Results: Both types of goose meat (without and with skin) and heat treatment had a significant effect on nutrient values, mineral concentration, and retention coefficients. The S meat was characterized by a higher protein content than M and SV meat, and had the lowest fat, protein, and cholesterol retention, among other methods. The M meat had lower total cholesterol content than SV and S meat. There were significant differences in energy value for SV, M, and S meats. The SV meat contained less P, Mg, Fe, Zn, and more Na and K than the M and S samples. The highest values of Zn, Mg, and Fe content and the lowest of K and Ca were recorded in S meat compared with the SV and M samples. The retention coefficients of P, Mg, Na, Ca, and K in S meat were lower than in the SV and M samples. The meat without skin was characterized by a lower energy value, fat content, retention of proteins, and cholesterol, but higher fat retention than skin samples. This meat contained more minerals such as P, Mg, Fe, K, Na, and less Ca than skin meat. Higher retention coefficients were observed for Zn, P, Mg, Ca, and lower were observed for Na, Fe, and K in meat without skin than in samples with skin. Conclusions: From a dietary point of view, the most beneficial were SV muscles without skin. Whereas, taking into account the protein, fat content, and retention coefficients of fat, cholesterol, Zn, and Na, the most optimal form of cooking for meat with skin seems to be stewing. These results may be used by consumers in making dietary choices by taking into account the type of goose meat and kind of heat treatment.