Cargando…
Early Diagnosis of Brain Diseases Using Artificial Intelligence and EV Molecular Data: A Proposed Noninvasive Repeated Diagnosis Approach
Brain-derived extracellular vesicles (BDEVs) are released from the central nervous system. Brain-related research and diagnostic techniques involving BDEVs have rapidly emerged as a means of diagnosing brain disorders because they are minimally invasive and enable repeatable measurements based on bo...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9818301/ https://www.ncbi.nlm.nih.gov/pubmed/36611896 http://dx.doi.org/10.3390/cells12010102 |
_version_ | 1784864951520722944 |
---|---|
author | Park, Jae Hyun Moon, Jisook |
author_facet | Park, Jae Hyun Moon, Jisook |
author_sort | Park, Jae Hyun |
collection | PubMed |
description | Brain-derived extracellular vesicles (BDEVs) are released from the central nervous system. Brain-related research and diagnostic techniques involving BDEVs have rapidly emerged as a means of diagnosing brain disorders because they are minimally invasive and enable repeatable measurements based on body fluids. However, EVs from various cells and organs are mixed in the blood, acting as potential obstacles for brain diagnostic systems using BDEVs. Therefore, it is important to screen appropriate brain EV markers to isolate BDEVs in blood. Here, we established a strategy for screening potential BDEV biomarkers. To collect various molecular data from the BDEVs, we propose that the sensitivity and specificity of the diagnostic system could be enhanced using machine learning and AI analysis. This BDEV-based diagnostic strategy could be used to diagnose various brain diseases and will help prevent disease through early diagnosis and early treatment. |
format | Online Article Text |
id | pubmed-9818301 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-98183012023-01-07 Early Diagnosis of Brain Diseases Using Artificial Intelligence and EV Molecular Data: A Proposed Noninvasive Repeated Diagnosis Approach Park, Jae Hyun Moon, Jisook Cells Commentary Brain-derived extracellular vesicles (BDEVs) are released from the central nervous system. Brain-related research and diagnostic techniques involving BDEVs have rapidly emerged as a means of diagnosing brain disorders because they are minimally invasive and enable repeatable measurements based on body fluids. However, EVs from various cells and organs are mixed in the blood, acting as potential obstacles for brain diagnostic systems using BDEVs. Therefore, it is important to screen appropriate brain EV markers to isolate BDEVs in blood. Here, we established a strategy for screening potential BDEV biomarkers. To collect various molecular data from the BDEVs, we propose that the sensitivity and specificity of the diagnostic system could be enhanced using machine learning and AI analysis. This BDEV-based diagnostic strategy could be used to diagnose various brain diseases and will help prevent disease through early diagnosis and early treatment. MDPI 2022-12-26 /pmc/articles/PMC9818301/ /pubmed/36611896 http://dx.doi.org/10.3390/cells12010102 Text en © 2022 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Commentary Park, Jae Hyun Moon, Jisook Early Diagnosis of Brain Diseases Using Artificial Intelligence and EV Molecular Data: A Proposed Noninvasive Repeated Diagnosis Approach |
title | Early Diagnosis of Brain Diseases Using Artificial Intelligence and EV Molecular Data: A Proposed Noninvasive Repeated Diagnosis Approach |
title_full | Early Diagnosis of Brain Diseases Using Artificial Intelligence and EV Molecular Data: A Proposed Noninvasive Repeated Diagnosis Approach |
title_fullStr | Early Diagnosis of Brain Diseases Using Artificial Intelligence and EV Molecular Data: A Proposed Noninvasive Repeated Diagnosis Approach |
title_full_unstemmed | Early Diagnosis of Brain Diseases Using Artificial Intelligence and EV Molecular Data: A Proposed Noninvasive Repeated Diagnosis Approach |
title_short | Early Diagnosis of Brain Diseases Using Artificial Intelligence and EV Molecular Data: A Proposed Noninvasive Repeated Diagnosis Approach |
title_sort | early diagnosis of brain diseases using artificial intelligence and ev molecular data: a proposed noninvasive repeated diagnosis approach |
topic | Commentary |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9818301/ https://www.ncbi.nlm.nih.gov/pubmed/36611896 http://dx.doi.org/10.3390/cells12010102 |
work_keys_str_mv | AT parkjaehyun earlydiagnosisofbraindiseasesusingartificialintelligenceandevmoleculardataaproposednoninvasiverepeateddiagnosisapproach AT moonjisook earlydiagnosisofbraindiseasesusingartificialintelligenceandevmoleculardataaproposednoninvasiverepeateddiagnosisapproach |