Cargando…
Sleep-Disturbance-Induced Microglial Activation Involves CRH-Mediated Galectin 3 and Autophagy Dysregulation
Chronic sleep disturbances (CSDs) including insomnia, insufficient sleep time, and poor sleep quality are major public health concerns around the world, especially in developed countries. CSDs are major health risk factors linked to multiple neurodegenerative and neuropsychological diseases. It has...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9818437/ https://www.ncbi.nlm.nih.gov/pubmed/36611953 http://dx.doi.org/10.3390/cells12010160 |
_version_ | 1784864985646628864 |
---|---|
author | Guo, Liyang Reed, Kirstin M. Carter, Ashley Cheng, Yan Roodsari, Soheil Kazemi Martinez Pineda, Damian Wellman, Laurie L. Sanford, Larry D. Guo, Ming-Lei |
author_facet | Guo, Liyang Reed, Kirstin M. Carter, Ashley Cheng, Yan Roodsari, Soheil Kazemi Martinez Pineda, Damian Wellman, Laurie L. Sanford, Larry D. Guo, Ming-Lei |
author_sort | Guo, Liyang |
collection | PubMed |
description | Chronic sleep disturbances (CSDs) including insomnia, insufficient sleep time, and poor sleep quality are major public health concerns around the world, especially in developed countries. CSDs are major health risk factors linked to multiple neurodegenerative and neuropsychological diseases. It has been suggested that CSDs could activate microglia (Mg) leading to increased neuroinflammation levels, which ultimately lead to neuronal dysfunction. However, the detailed mechanisms underlying CSD-mediated microglial activation remain mostly unexplored. In this study, we used mice with three-weeks of sleep fragmentation (SF) to explore the underlying pathways responsible for Mg activation. Our results revealed that SF activates Mg in the hippocampus (HP) but not in the striatum and prefrontal cortex (PFc). SF increased the levels of corticotropin-releasing hormone (CRH) in the HP. In vitro mechanism studies revealed that CRH activation of Mg involves galectin 3 (Gal3) upregulation and autophagy dysregulation. CRH could disrupt lysosome membrane integrity resulting in lysosomal cathepsins leakage. CRHR2 blockage mitigated CRH-mediated effects on microglia in vitro. SF mice also show increased Gal3 levels and autophagy dysregulation in the HP compared to controls. Taken together, our results show that SF-mediated hippocampal Mg activation involves CRH mediated galectin 3 and autophagy dysregulation. These findings suggest that targeting the hippocampal CRH system might be a novel therapeutic approach to ameliorate CSD-mediated neuroinflammation and neurodegenerative diseases. |
format | Online Article Text |
id | pubmed-9818437 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-98184372023-01-07 Sleep-Disturbance-Induced Microglial Activation Involves CRH-Mediated Galectin 3 and Autophagy Dysregulation Guo, Liyang Reed, Kirstin M. Carter, Ashley Cheng, Yan Roodsari, Soheil Kazemi Martinez Pineda, Damian Wellman, Laurie L. Sanford, Larry D. Guo, Ming-Lei Cells Article Chronic sleep disturbances (CSDs) including insomnia, insufficient sleep time, and poor sleep quality are major public health concerns around the world, especially in developed countries. CSDs are major health risk factors linked to multiple neurodegenerative and neuropsychological diseases. It has been suggested that CSDs could activate microglia (Mg) leading to increased neuroinflammation levels, which ultimately lead to neuronal dysfunction. However, the detailed mechanisms underlying CSD-mediated microglial activation remain mostly unexplored. In this study, we used mice with three-weeks of sleep fragmentation (SF) to explore the underlying pathways responsible for Mg activation. Our results revealed that SF activates Mg in the hippocampus (HP) but not in the striatum and prefrontal cortex (PFc). SF increased the levels of corticotropin-releasing hormone (CRH) in the HP. In vitro mechanism studies revealed that CRH activation of Mg involves galectin 3 (Gal3) upregulation and autophagy dysregulation. CRH could disrupt lysosome membrane integrity resulting in lysosomal cathepsins leakage. CRHR2 blockage mitigated CRH-mediated effects on microglia in vitro. SF mice also show increased Gal3 levels and autophagy dysregulation in the HP compared to controls. Taken together, our results show that SF-mediated hippocampal Mg activation involves CRH mediated galectin 3 and autophagy dysregulation. These findings suggest that targeting the hippocampal CRH system might be a novel therapeutic approach to ameliorate CSD-mediated neuroinflammation and neurodegenerative diseases. MDPI 2022-12-30 /pmc/articles/PMC9818437/ /pubmed/36611953 http://dx.doi.org/10.3390/cells12010160 Text en © 2022 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Guo, Liyang Reed, Kirstin M. Carter, Ashley Cheng, Yan Roodsari, Soheil Kazemi Martinez Pineda, Damian Wellman, Laurie L. Sanford, Larry D. Guo, Ming-Lei Sleep-Disturbance-Induced Microglial Activation Involves CRH-Mediated Galectin 3 and Autophagy Dysregulation |
title | Sleep-Disturbance-Induced Microglial Activation Involves CRH-Mediated Galectin 3 and Autophagy Dysregulation |
title_full | Sleep-Disturbance-Induced Microglial Activation Involves CRH-Mediated Galectin 3 and Autophagy Dysregulation |
title_fullStr | Sleep-Disturbance-Induced Microglial Activation Involves CRH-Mediated Galectin 3 and Autophagy Dysregulation |
title_full_unstemmed | Sleep-Disturbance-Induced Microglial Activation Involves CRH-Mediated Galectin 3 and Autophagy Dysregulation |
title_short | Sleep-Disturbance-Induced Microglial Activation Involves CRH-Mediated Galectin 3 and Autophagy Dysregulation |
title_sort | sleep-disturbance-induced microglial activation involves crh-mediated galectin 3 and autophagy dysregulation |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9818437/ https://www.ncbi.nlm.nih.gov/pubmed/36611953 http://dx.doi.org/10.3390/cells12010160 |
work_keys_str_mv | AT guoliyang sleepdisturbanceinducedmicroglialactivationinvolvescrhmediatedgalectin3andautophagydysregulation AT reedkirstinm sleepdisturbanceinducedmicroglialactivationinvolvescrhmediatedgalectin3andautophagydysregulation AT carterashley sleepdisturbanceinducedmicroglialactivationinvolvescrhmediatedgalectin3andautophagydysregulation AT chengyan sleepdisturbanceinducedmicroglialactivationinvolvescrhmediatedgalectin3andautophagydysregulation AT roodsarisoheilkazemi sleepdisturbanceinducedmicroglialactivationinvolvescrhmediatedgalectin3andautophagydysregulation AT martinezpinedadamian sleepdisturbanceinducedmicroglialactivationinvolvescrhmediatedgalectin3andautophagydysregulation AT wellmanlauriel sleepdisturbanceinducedmicroglialactivationinvolvescrhmediatedgalectin3andautophagydysregulation AT sanfordlarryd sleepdisturbanceinducedmicroglialactivationinvolvescrhmediatedgalectin3andautophagydysregulation AT guominglei sleepdisturbanceinducedmicroglialactivationinvolvescrhmediatedgalectin3andautophagydysregulation |