Cargando…

Development of an Encapsulation Method for Trapping the Active Materials from Sour Cherry Biowaste in Alginate Microcapsules

This study aims to contribute to those valorization approaches for the recovery process of high-value-added substances in environmentally friendly ways. In this study, one of the most consumed juice products was selected for providing waste byproducts (peel). Sour cherry peels were subjected to auto...

Descripción completa

Detalles Bibliográficos
Autores principales: Toprakçı, İrem, Torun, Mehmet, Şahin, Selin
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9818546/
https://www.ncbi.nlm.nih.gov/pubmed/36613344
http://dx.doi.org/10.3390/foods12010130
Descripción
Sumario:This study aims to contribute to those valorization approaches for the recovery process of high-value-added substances in environmentally friendly ways. In this study, one of the most consumed juice products was selected for providing waste byproducts (peel). Sour cherry peels were subjected to automatic solvent extraction using a GRAS solvent (aqueous 80% ethanol, v/v). Then, encapsulation for the preservation of the related extract was performed by ionic gelation in alginate beads. The process conditions (gelling medium concentration, wall material concentration, and hardening time) were optimized by a Box–Behnken design (statistical experimental design approach). An almost 80% encapsulation efficiency was achieved under the proposed method (7.8% CaCI(2), 1.3% alginate, and 26 min). The inhibition effect of the produced capsules against DPPH (2,2-diphenyl-1-picrylhydrazil) radicals also shows that the current products might represent potential alternative natural antioxidants for food formulations. The morphological properties were also measured.