Cargando…
ETECADx: Ensemble Self-Attention Transformer Encoder for Breast Cancer Diagnosis Using Full-Field Digital X-ray Breast Images
Early detection of breast cancer is an essential procedure to reduce the mortality rate among women. In this paper, a new AI-based computer-aided diagnosis (CAD) framework called ETECADx is proposed by fusing the benefits of both ensemble transfer learning of the convolutional neural networks as wel...
Autores principales: | Al-Hejri, Aymen M., Al-Tam, Riyadh M., Fazea, Muneer, Sable, Archana Harsing, Lee, Soojeong, Al-antari, Mugahed A. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9818801/ https://www.ncbi.nlm.nih.gov/pubmed/36611382 http://dx.doi.org/10.3390/diagnostics13010089 |
Ejemplares similares
-
A Hybrid Workflow of Residual Convolutional Transformer Encoder for Breast Cancer Classification Using Digital X-ray Mammograms
por: Al-Tam, Riyadh M., et al.
Publicado: (2022) -
Dual-Sensor Signals Based Exact Gaussian Process-Assisted Hybrid Feature Extraction and Weighted Feature Fusion for Respiratory Rate and Uncertainty Estimations
por: Lee, Soojeong, et al.
Publicado: (2022) -
A hybrid explainable ensemble transformer encoder for pneumonia identification from chest X-ray images
por: Ukwuoma, Chiagoziem C., et al.
Publicado: (2022) -
Artificial Intelligence for Medical Diagnostics—Existing and Future AI Technology!
por: Al-Antari, Mugahed A.
Publicado: (2023) -
A Hybrid Deep Transfer Learning of CNN-Based LR-PCA for Breast Lesion Diagnosis via Medical Breast Mammograms
por: Samee, Nagwan Abdel, et al.
Publicado: (2022)