Cargando…
Multi-Stage Temporal Convolutional Network with Moment Loss and Positional Encoding for Surgical Phase Recognition
In recent times, many studies concerning surgical video analysis are being conducted due to its growing importance in many medical applications. In particular, it is very important to be able to recognize the current surgical phase because the phase information can be utilized in various ways both d...
Autores principales: | Park, Minyoung, Oh, Seungtaek, Jeong, Taikyeong, Yu, Sungwook |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9818879/ https://www.ncbi.nlm.nih.gov/pubmed/36611399 http://dx.doi.org/10.3390/diagnostics13010107 |
Ejemplares similares
-
Global–local multi-stage temporal convolutional network for cataract surgery phase recognition
por: Fang, Lixin, et al.
Publicado: (2022) -
Multi-task temporal convolutional networks for joint recognition of surgical phases and steps in gastric bypass procedures
por: Ramesh, Sanat, et al.
Publicado: (2021) -
Multi-Stage Temporal Convolution Network for COVID-19 Variant Classification
por: Ullah, Waseem, et al.
Publicado: (2022) -
Moments and moment invariants in pattern recognition /
por: Flusser, Jan
Publicado: (2009) -
Moments and Moment Invariants in Pattern Recognition
por: Flusser, Jan, et al.
Publicado: (2009)