Cargando…
Feature Reduction for the Classification of Bruise Damage to Apple Fruit Using a Contactless FT-NIR Spectroscopy with Machine Learning
Spectroscopy data are useful for modelling biological systems such as predicting quality parameters of horticultural products. However, using the wide spectrum of wavelengths is not practical in a production setting. Such data are of high dimensional nature and they tend to result in complex models...
Autores principales: | Nturambirwe, Jean Frederic Isingizwe, Hussein, Eslam A., Vaccari, Mattia, Thron, Christopher, Perold, Willem Jacobus, Opara, Umezuruike Linus |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9818888/ https://www.ncbi.nlm.nih.gov/pubmed/36613425 http://dx.doi.org/10.3390/foods12010210 |
Ejemplares similares
-
Classification Learning of Latent Bruise Damage to Apples Using Shortwave Infrared Hyperspectral Imaging
por: Nturambirwe, Jean Frederic Isingizwe, et al.
Publicado: (2021) -
Vis-NIR and SWIR hyperspectral imaging method to detect bruises in pomegranate fruit
por: Okere, Emmanuel Ekene, et al.
Publicado: (2023) -
Measuring Internal Maturity Parameters Contactless on Intact Table Grape Bunches Using NIR Spectroscopy
por: Daniels, Andries J., et al.
Publicado: (2019) -
Non-Invasive Methods for Predicting the Quality of Processed Horticultural Food Products, with Emphasis on Dried Powders, Juices and Oils: A Review
por: Okere, Emmanuel Ekene, et al.
Publicado: (2021) -
Non-destructive Evaluation of the Quality Characteristics of Pomegranate Kernel Oil by Fourier Transform Near-Infrared and Mid-Infrared Spectroscopy
por: Okere, Emmanuel E., et al.
Publicado: (2022)