Cargando…
A Deep CNN Transformer Hybrid Model for Skin Lesion Classification of Dermoscopic Images Using Focal Loss
Skin cancers are the most cancers diagnosed worldwide, with an estimated > 1.5 million new cases in 2020. Use of computer-aided diagnosis (CAD) systems for early detection and classification of skin lesions helps reduce skin cancer mortality rates. Inspired by the success of the transformer netwo...
Autores principales: | Nie, Yali, Sommella, Paolo, Carratù, Marco, O’Nils, Mattias, Lundgren, Jan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9818899/ https://www.ncbi.nlm.nih.gov/pubmed/36611363 http://dx.doi.org/10.3390/diagnostics13010072 |
Ejemplares similares
-
Boosting the performance of pretrained CNN architecture on dermoscopic pigmented skin lesion classification
por: Nugroho, Erwin Setyo, et al.
Publicado: (2023) -
Multi-Camera Based Setup for Geometrical Measurement of Free-Falling Molten Glass Gob
por: Hussain, Mazhar, et al.
Publicado: (2021) -
Automated Lung Sound Classification Using a Hybrid CNN-LSTM Network and Focal Loss Function
por: Petmezas, Georgios, et al.
Publicado: (2022) -
A novel hybrid transformer-CNN architecture for environmental microorganism classification
por: Shao, Ran, et al.
Publicado: (2022) -
A Study on the Correlation between Change in the Geometrical Dimension of a Free-Falling Molten Glass Gob and Its Viscosity
por: Hussain, Mazhar, et al.
Publicado: (2022)