Cargando…
Potential Use of Cardunculus Biomass on Pleurotus eryngii Production: Heteroglycans Content and Nutritional Properties (Preliminary Results)
The new perspective of using waste biomass to cultivate mushrooms as a source of protein for human nutrition, in line with the circular economy principles, is receiving increasing attention in the scientific community and represents great wealth in terms of environmental sustainability. Pleurotus er...
Autores principales: | , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9818939/ https://www.ncbi.nlm.nih.gov/pubmed/36613273 http://dx.doi.org/10.3390/foods12010058 |
Sumario: | The new perspective of using waste biomass to cultivate mushrooms as a source of protein for human nutrition, in line with the circular economy principles, is receiving increasing attention in the scientific community and represents great wealth in terms of environmental sustainability. Pleurotus eryngii is a mushroom also known as cardunculus mushroom due to its ability to grow on this plant. This study explores the potential intrinsic properties of cardunculus (for example, the presence of inulin in the roots) as raw material for the growth of cardunculus mushrooms, and the influence on heteroglycan content and nutrition parameters of the fruiting bodies. Both mycelium and fruiting bodies were used to determine the heteroglycan content in the presence of inulin or cardunculus roots rich in inulin. To produce heteroglycans from P. eryngii in greater quantities and shorter times without having to wait for the formation of the fruiting bodies, the mycelium could be used. The results showed that the presence of cardunculus biomass positively influences the heteroglycan content of P. eryngii. In terms of nutritional parameters, higher contents of polyphenols, flavonoids, anthocyanins, and antioxidant activity were detected in P. eryngii grown on the cardunculus stem and root substrate. In conclusion, recycling cardunculus biomass to generate growth blocks for edible mushrooms is a winning choice due to the opportunity to use this biomass waste, which is gaining more and more attention due to the increase in cultivated areas and the use of fruiting bodies of P. eryngii as a functional food and source of molecules with potential biological activities. |
---|