Cargando…
Deep Learning for the Detection and Classification of Diabetic Retinopathy with an Improved Activation Function
Diabetic retinopathy (DR) is an eye disease triggered due to diabetes, which may lead to blindness. To prevent diabetic patients from becoming blind, early diagnosis and accurate detection of DR are vital. Deep learning models, such as convolutional neural networks (CNNs), are largely used in DR det...
Autores principales: | Bhimavarapu, Usharani, Battineni, Gopi |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9819317/ https://www.ncbi.nlm.nih.gov/pubmed/36611557 http://dx.doi.org/10.3390/healthcare11010097 |
Ejemplares similares
-
Automatic Detection and Classification of Diabetic Retinopathy Using the Improved Pooling Function in the Convolution Neural Network
por: Bhimavarapu, Usharani, et al.
Publicado: (2023) -
Automatic Microaneurysms Detection for Early Diagnosis of Diabetic Retinopathy Using Improved Discrete Particle Swarm Optimization
por: Bhimavarapu, Usharani, et al.
Publicado: (2022) -
Skin Lesion Analysis for Melanoma Detection Using the Novel Deep Learning Model Fuzzy GC-SCNN
por: Bhimavarapu, Usharani, et al.
Publicado: (2022) -
Using Deep Learning Architectures for Detection and Classification of Diabetic Retinopathy
por: Mohanty, Cheena, et al.
Publicado: (2023) -
Cascaded Deep Learning Frameworks in Contribution to the Detection of Parkinson’s Disease
por: Chintalapudi, Nalini, et al.
Publicado: (2022)