Cargando…
Prediction of Cavity Length Using an Interpretable Ensemble Learning Approach
The cavity length, which is a vital index in aeration and corrosion reduction engineering, is affected by many factors and is challenging to calculate. In this study, 10-fold cross-validation was performed to select the optimal input configuration. Additionally, the hyperparameters of three ensemble...
Autores principales: | Guo, Ganggui, Li, Shanshan, Liu, Yakun, Cao, Ze, Deng, Yangyu |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9819684/ https://www.ncbi.nlm.nih.gov/pubmed/36613022 http://dx.doi.org/10.3390/ijerph20010702 |
Ejemplares similares
-
Comparison and improvement of the predictability and interpretability with ensemble learning models in QSPR applications
por: Chen, Chia-Hsiu, et al.
Publicado: (2020) -
Computational prediction and interpretation of druggable proteins using a stacked ensemble-learning framework
por: Charoenkwan, Phasit, et al.
Publicado: (2022) -
Interpretable Machine
Learning of Amino Acid Patterns
in Proteins: A Statistical Ensemble Approach
por: Braghetto, Anna, et al.
Publicado: (2023) -
An ensemble learning approach for diabetes prediction using boosting techniques
por: Ganie, Shahid Mohammad, et al.
Publicado: (2023) -
Interpretable Predictive Modelling of Basalt Fiber Reinforced Concrete Splitting Tensile Strength Using Ensemble Machine Learning Methods and SHAP Approach
por: Cakiroglu, Celal, et al.
Publicado: (2023)