Cargando…
Nutrients and Environmental Factors Cross Wavelet Analysis of River Yi in East China: A Multi-Scale Approach
The accumulation of nutrients in rivers is a major cause of eutrophication, and the change in nutrient content is affected by a variety of factors. Taking the River Yi as an example, this study used wavelet analysis tools to examine the periodic changes in nutrients and environmental factors, as wel...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9819906/ https://www.ncbi.nlm.nih.gov/pubmed/36612818 http://dx.doi.org/10.3390/ijerph20010496 |
_version_ | 1784865342906957824 |
---|---|
author | Wang, Lizhi Song, Hongli An, Juan Dong, Bin Wu, Xiyuan Wu, Yuanzhi Wang, Yun Li, Bao Liu, Qianjin Yu, Wanni |
author_facet | Wang, Lizhi Song, Hongli An, Juan Dong, Bin Wu, Xiyuan Wu, Yuanzhi Wang, Yun Li, Bao Liu, Qianjin Yu, Wanni |
author_sort | Wang, Lizhi |
collection | PubMed |
description | The accumulation of nutrients in rivers is a major cause of eutrophication, and the change in nutrient content is affected by a variety of factors. Taking the River Yi as an example, this study used wavelet analysis tools to examine the periodic changes in nutrients and environmental factors, as well as the relationship between nutrients and environmental factors. The results revealed that total phosphorus (TP), total nitrogen (TN), and ammonia nitrogen ([Formula: see text] –N) exhibit multiscale oscillation features, with the dominating periods of 16–17, 26, and 57–60 months. The continuous wavelet transform revealed periodic fluctuation laws on multiple scales between nutrients and several environmental factors. Wavelet transform coherence (WTC) was performed on nutrients and environmental factors, and the results showed that temperature and dissolved oxygen (DO) have a strong influence on nutrient concentration fluctuation. The WTC revealed a weak correlation between pH and TP. On a longer period, however, pH was positively correlated with TN. The flow was found to be positively correct with N and P, while N and P were found to be negatively correct with DO and electrical conductance (EC) at different scales. In most cases, TP was negatively correlated with 5-day biochemical oxygen demand (BOD(5)) and permanganate index (COD(Mn)). The correlation between TN and COD(Mn) and BOD(5) was limited, and no clear dominant phase emerged. In a nutshell, wavelet analysis revealed that water temperature, pH, DO, flow, EC, COD(Mn), and BOD(5) had a pronounced influence on nutrient concentration in the River Yi at different time scales. In the case of the combination of environmental factors, pH and DO play the largest role in determining nutrient concentration. |
format | Online Article Text |
id | pubmed-9819906 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-98199062023-01-07 Nutrients and Environmental Factors Cross Wavelet Analysis of River Yi in East China: A Multi-Scale Approach Wang, Lizhi Song, Hongli An, Juan Dong, Bin Wu, Xiyuan Wu, Yuanzhi Wang, Yun Li, Bao Liu, Qianjin Yu, Wanni Int J Environ Res Public Health Article The accumulation of nutrients in rivers is a major cause of eutrophication, and the change in nutrient content is affected by a variety of factors. Taking the River Yi as an example, this study used wavelet analysis tools to examine the periodic changes in nutrients and environmental factors, as well as the relationship between nutrients and environmental factors. The results revealed that total phosphorus (TP), total nitrogen (TN), and ammonia nitrogen ([Formula: see text] –N) exhibit multiscale oscillation features, with the dominating periods of 16–17, 26, and 57–60 months. The continuous wavelet transform revealed periodic fluctuation laws on multiple scales between nutrients and several environmental factors. Wavelet transform coherence (WTC) was performed on nutrients and environmental factors, and the results showed that temperature and dissolved oxygen (DO) have a strong influence on nutrient concentration fluctuation. The WTC revealed a weak correlation between pH and TP. On a longer period, however, pH was positively correlated with TN. The flow was found to be positively correct with N and P, while N and P were found to be negatively correct with DO and electrical conductance (EC) at different scales. In most cases, TP was negatively correlated with 5-day biochemical oxygen demand (BOD(5)) and permanganate index (COD(Mn)). The correlation between TN and COD(Mn) and BOD(5) was limited, and no clear dominant phase emerged. In a nutshell, wavelet analysis revealed that water temperature, pH, DO, flow, EC, COD(Mn), and BOD(5) had a pronounced influence on nutrient concentration in the River Yi at different time scales. In the case of the combination of environmental factors, pH and DO play the largest role in determining nutrient concentration. MDPI 2022-12-28 /pmc/articles/PMC9819906/ /pubmed/36612818 http://dx.doi.org/10.3390/ijerph20010496 Text en © 2022 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Wang, Lizhi Song, Hongli An, Juan Dong, Bin Wu, Xiyuan Wu, Yuanzhi Wang, Yun Li, Bao Liu, Qianjin Yu, Wanni Nutrients and Environmental Factors Cross Wavelet Analysis of River Yi in East China: A Multi-Scale Approach |
title | Nutrients and Environmental Factors Cross Wavelet Analysis of River Yi in East China: A Multi-Scale Approach |
title_full | Nutrients and Environmental Factors Cross Wavelet Analysis of River Yi in East China: A Multi-Scale Approach |
title_fullStr | Nutrients and Environmental Factors Cross Wavelet Analysis of River Yi in East China: A Multi-Scale Approach |
title_full_unstemmed | Nutrients and Environmental Factors Cross Wavelet Analysis of River Yi in East China: A Multi-Scale Approach |
title_short | Nutrients and Environmental Factors Cross Wavelet Analysis of River Yi in East China: A Multi-Scale Approach |
title_sort | nutrients and environmental factors cross wavelet analysis of river yi in east china: a multi-scale approach |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9819906/ https://www.ncbi.nlm.nih.gov/pubmed/36612818 http://dx.doi.org/10.3390/ijerph20010496 |
work_keys_str_mv | AT wanglizhi nutrientsandenvironmentalfactorscrosswaveletanalysisofriveryiineastchinaamultiscaleapproach AT songhongli nutrientsandenvironmentalfactorscrosswaveletanalysisofriveryiineastchinaamultiscaleapproach AT anjuan nutrientsandenvironmentalfactorscrosswaveletanalysisofriveryiineastchinaamultiscaleapproach AT dongbin nutrientsandenvironmentalfactorscrosswaveletanalysisofriveryiineastchinaamultiscaleapproach AT wuxiyuan nutrientsandenvironmentalfactorscrosswaveletanalysisofriveryiineastchinaamultiscaleapproach AT wuyuanzhi nutrientsandenvironmentalfactorscrosswaveletanalysisofriveryiineastchinaamultiscaleapproach AT wangyun nutrientsandenvironmentalfactorscrosswaveletanalysisofriveryiineastchinaamultiscaleapproach AT libao nutrientsandenvironmentalfactorscrosswaveletanalysisofriveryiineastchinaamultiscaleapproach AT liuqianjin nutrientsandenvironmentalfactorscrosswaveletanalysisofriveryiineastchinaamultiscaleapproach AT yuwanni nutrientsandenvironmentalfactorscrosswaveletanalysisofriveryiineastchinaamultiscaleapproach |