Cargando…
COVID-19 Public Opinion: A Twitter Healthcare Data Processing Using Machine Learning Methodologies
The COVID-19 pandemic has shattered the whole world, and due to this, millions of people have posted their sentiments toward the pandemic on different social media platforms. This resulted in a huge information flow on social media and attracted many research studies aimed at extracting useful infor...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9819913/ https://www.ncbi.nlm.nih.gov/pubmed/36612755 http://dx.doi.org/10.3390/ijerph20010432 |
_version_ | 1784865344622428160 |
---|---|
author | Agrawal, Shweta Jain, Sanjiv Kumar Sharma, Shruti Khatri, Ajay |
author_facet | Agrawal, Shweta Jain, Sanjiv Kumar Sharma, Shruti Khatri, Ajay |
author_sort | Agrawal, Shweta |
collection | PubMed |
description | The COVID-19 pandemic has shattered the whole world, and due to this, millions of people have posted their sentiments toward the pandemic on different social media platforms. This resulted in a huge information flow on social media and attracted many research studies aimed at extracting useful information to understand the sentiments. This paper analyses data imported from the Twitter API for the healthcare sector, emphasizing sub-domains, such as vaccines, post-COVID-19 health issues and healthcare service providers. The main objective of this research is to analyze machine learning models for classifying the sentiments of people and analyzing the direction of polarity by considering the views of the majority of people. The inferences drawn from this analysis may be useful for concerned authorities as they work to make appropriate policy decisions and strategic decisions. Various machine learning models were developed to extract the actual emotions, and results show that the support vector machine model outperforms with an average accuracy of 82.67% compared with the logistic regression, random forest, multinomial naïve Bayes and long short-term memory models, which present 78%, 77%, 68.67% and 75% accuracy, respectively. |
format | Online Article Text |
id | pubmed-9819913 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-98199132023-01-07 COVID-19 Public Opinion: A Twitter Healthcare Data Processing Using Machine Learning Methodologies Agrawal, Shweta Jain, Sanjiv Kumar Sharma, Shruti Khatri, Ajay Int J Environ Res Public Health Article The COVID-19 pandemic has shattered the whole world, and due to this, millions of people have posted their sentiments toward the pandemic on different social media platforms. This resulted in a huge information flow on social media and attracted many research studies aimed at extracting useful information to understand the sentiments. This paper analyses data imported from the Twitter API for the healthcare sector, emphasizing sub-domains, such as vaccines, post-COVID-19 health issues and healthcare service providers. The main objective of this research is to analyze machine learning models for classifying the sentiments of people and analyzing the direction of polarity by considering the views of the majority of people. The inferences drawn from this analysis may be useful for concerned authorities as they work to make appropriate policy decisions and strategic decisions. Various machine learning models were developed to extract the actual emotions, and results show that the support vector machine model outperforms with an average accuracy of 82.67% compared with the logistic regression, random forest, multinomial naïve Bayes and long short-term memory models, which present 78%, 77%, 68.67% and 75% accuracy, respectively. MDPI 2022-12-27 /pmc/articles/PMC9819913/ /pubmed/36612755 http://dx.doi.org/10.3390/ijerph20010432 Text en © 2022 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Agrawal, Shweta Jain, Sanjiv Kumar Sharma, Shruti Khatri, Ajay COVID-19 Public Opinion: A Twitter Healthcare Data Processing Using Machine Learning Methodologies |
title | COVID-19 Public Opinion: A Twitter Healthcare Data Processing Using Machine Learning Methodologies |
title_full | COVID-19 Public Opinion: A Twitter Healthcare Data Processing Using Machine Learning Methodologies |
title_fullStr | COVID-19 Public Opinion: A Twitter Healthcare Data Processing Using Machine Learning Methodologies |
title_full_unstemmed | COVID-19 Public Opinion: A Twitter Healthcare Data Processing Using Machine Learning Methodologies |
title_short | COVID-19 Public Opinion: A Twitter Healthcare Data Processing Using Machine Learning Methodologies |
title_sort | covid-19 public opinion: a twitter healthcare data processing using machine learning methodologies |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9819913/ https://www.ncbi.nlm.nih.gov/pubmed/36612755 http://dx.doi.org/10.3390/ijerph20010432 |
work_keys_str_mv | AT agrawalshweta covid19publicopinionatwitterhealthcaredataprocessingusingmachinelearningmethodologies AT jainsanjivkumar covid19publicopinionatwitterhealthcaredataprocessingusingmachinelearningmethodologies AT sharmashruti covid19publicopinionatwitterhealthcaredataprocessingusingmachinelearningmethodologies AT khatriajay covid19publicopinionatwitterhealthcaredataprocessingusingmachinelearningmethodologies |