Cargando…
Spatial and Temporal Pattern of Net Ecosystem Productivity in China and Its Response to Climate Change in the Past 40 Years
Net ecosystem productivity (NEP), which is considered an important indicator to measure the carbon source/sink size of ecosystems on a regional scale, has been widely studied in recent years. Since China's terrestrial NEP plays an important role in the global carbon cycle, it is of great signif...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9819965/ https://www.ncbi.nlm.nih.gov/pubmed/36612413 http://dx.doi.org/10.3390/ijerph20010092 |
_version_ | 1784865357465387008 |
---|---|
author | Zhang, Cuili Huang, Ni Wang, Li Song, Wanjuan Zhang, Yuelin Niu, Zheng |
author_facet | Zhang, Cuili Huang, Ni Wang, Li Song, Wanjuan Zhang, Yuelin Niu, Zheng |
author_sort | Zhang, Cuili |
collection | PubMed |
description | Net ecosystem productivity (NEP), which is considered an important indicator to measure the carbon source/sink size of ecosystems on a regional scale, has been widely studied in recent years. Since China's terrestrial NEP plays an important role in the global carbon cycle, it is of great significance to systematically examine its spatiotemporal pattern and driving factors. Based on China's terrestrial NEP products estimated by a data-driven model from 1981 to 2018, the spatial and temporal pattern of China's terrestrial NEP was analyzed, as well as its response to climate change. The results demonstrate that the NEP in China has shown a pattern of high value in the west and low value in the east over the past 40 years. NEP in China from 1981 to 2018 showed a significantly increasing trend, and the NEP change trend was quite different in two sub-periods (i.e., 1981–1999 and 2000–2018). The temporal and spatial changes of China's terrestrial NEP in the past 40 years were affected by both temperature and precipitation. However, the area affected by precipitation was larger. Our results provide a valuable reference for the carbon sequestration capacity of China's terrestrial ecosystem. |
format | Online Article Text |
id | pubmed-9819965 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-98199652023-01-07 Spatial and Temporal Pattern of Net Ecosystem Productivity in China and Its Response to Climate Change in the Past 40 Years Zhang, Cuili Huang, Ni Wang, Li Song, Wanjuan Zhang, Yuelin Niu, Zheng Int J Environ Res Public Health Article Net ecosystem productivity (NEP), which is considered an important indicator to measure the carbon source/sink size of ecosystems on a regional scale, has been widely studied in recent years. Since China's terrestrial NEP plays an important role in the global carbon cycle, it is of great significance to systematically examine its spatiotemporal pattern and driving factors. Based on China's terrestrial NEP products estimated by a data-driven model from 1981 to 2018, the spatial and temporal pattern of China's terrestrial NEP was analyzed, as well as its response to climate change. The results demonstrate that the NEP in China has shown a pattern of high value in the west and low value in the east over the past 40 years. NEP in China from 1981 to 2018 showed a significantly increasing trend, and the NEP change trend was quite different in two sub-periods (i.e., 1981–1999 and 2000–2018). The temporal and spatial changes of China's terrestrial NEP in the past 40 years were affected by both temperature and precipitation. However, the area affected by precipitation was larger. Our results provide a valuable reference for the carbon sequestration capacity of China's terrestrial ecosystem. MDPI 2022-12-21 /pmc/articles/PMC9819965/ /pubmed/36612413 http://dx.doi.org/10.3390/ijerph20010092 Text en © 2022 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Zhang, Cuili Huang, Ni Wang, Li Song, Wanjuan Zhang, Yuelin Niu, Zheng Spatial and Temporal Pattern of Net Ecosystem Productivity in China and Its Response to Climate Change in the Past 40 Years |
title | Spatial and Temporal Pattern of Net Ecosystem Productivity in China and Its Response to Climate Change in the Past 40 Years |
title_full | Spatial and Temporal Pattern of Net Ecosystem Productivity in China and Its Response to Climate Change in the Past 40 Years |
title_fullStr | Spatial and Temporal Pattern of Net Ecosystem Productivity in China and Its Response to Climate Change in the Past 40 Years |
title_full_unstemmed | Spatial and Temporal Pattern of Net Ecosystem Productivity in China and Its Response to Climate Change in the Past 40 Years |
title_short | Spatial and Temporal Pattern of Net Ecosystem Productivity in China and Its Response to Climate Change in the Past 40 Years |
title_sort | spatial and temporal pattern of net ecosystem productivity in china and its response to climate change in the past 40 years |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9819965/ https://www.ncbi.nlm.nih.gov/pubmed/36612413 http://dx.doi.org/10.3390/ijerph20010092 |
work_keys_str_mv | AT zhangcuili spatialandtemporalpatternofnetecosystemproductivityinchinaanditsresponsetoclimatechangeinthepast40years AT huangni spatialandtemporalpatternofnetecosystemproductivityinchinaanditsresponsetoclimatechangeinthepast40years AT wangli spatialandtemporalpatternofnetecosystemproductivityinchinaanditsresponsetoclimatechangeinthepast40years AT songwanjuan spatialandtemporalpatternofnetecosystemproductivityinchinaanditsresponsetoclimatechangeinthepast40years AT zhangyuelin spatialandtemporalpatternofnetecosystemproductivityinchinaanditsresponsetoclimatechangeinthepast40years AT niuzheng spatialandtemporalpatternofnetecosystemproductivityinchinaanditsresponsetoclimatechangeinthepast40years |