Cargando…
An Integrated System of Multifaceted Machine Learning Models to Predict If and When Hospital-Acquired Pressure Injuries (Bedsores) Occur
Hospital-Acquired Pressure Injury (HAPI), known as bedsore or decubitus ulcer, is one of the most common health conditions in the United States. Machine learning has been used to predict HAPI. This is insufficient information for the clinical team because knowing who would develop HAPI in the future...
Autores principales: | Dweekat, Odai Y., Lam, Sarah S., McGrath, Lindsay |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9820011/ https://www.ncbi.nlm.nih.gov/pubmed/36613150 http://dx.doi.org/10.3390/ijerph20010828 |
Ejemplares similares
-
An Integrated System of Braden Scale and Random Forest Using Real-Time Diagnoses to Predict When Hospital-Acquired Pressure Injuries (Bedsores) Occur
por: Dweekat, Odai Y., et al.
Publicado: (2023) -
A Hybrid System of Braden Scale and Machine Learning to Predict Hospital-Acquired Pressure Injuries (Bedsores): A Retrospective Observational Cohort Study
por: Dweekat, Odai Y., et al.
Publicado: (2022) -
Machine Learning Techniques, Applications, and Potential Future Opportunities in Pressure Injuries (Bedsores) Management: A Systematic Review
por: Dweekat, Odai Y., et al.
Publicado: (2023) -
Cervical Cancer Diagnosis Using an Integrated System of Principal Component Analysis, Genetic Algorithm, and Multilayer Perceptron
por: Dweekat, Odai Y., et al.
Publicado: (2022) -
Bedsores successfully treated with topical phenytoin
por: Inchingolo, Francesco, et al.
Publicado: (2017)