Cargando…
Learning in Transcriptional Network Models: Computational Discovery of Pathway-Level Memory and Effective Interventions
Trainability, in any substrate, refers to the ability to change future behavior based on past experiences. An understanding of such capacity within biological cells and tissues would enable a particularly powerful set of methods for prediction and control of their behavior through specific patterns...
Autores principales: | Biswas, Surama, Clawson, Wesley, Levin, Michael |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9820177/ https://www.ncbi.nlm.nih.gov/pubmed/36613729 http://dx.doi.org/10.3390/ijms24010285 |
Ejemplares similares
-
Gene regulatory networks exhibit several kinds of memory: quantification of memory in biological and random transcriptional networks
por: Biswas, Surama, et al.
Publicado: (2021) -
Modelling amorphous computations with transcription networks
por: Simpson, Zack Booth, et al.
Publicado: (2009) -
Computational discovery of transcription factors associated with drug response
por: Hanson, C, et al.
Publicado: (2016) -
Computational discovery of pathway-level genetic vulnerabilities in non-small-cell lung cancer
por: Young, Jonathan H., et al.
Publicado: (2016) -
Probabilistic computation underlying sequence learning in a spiking attractor memory network
por: Tully, Philip, et al.
Publicado: (2013)