Cargando…

Evaluation of Preparation and Detoxification of Hemicellulose Hydrolysate for Improved Xylitol Production from Quinoa Straw

Quinoa straw is rich in hemicellulose, and it could be hydrolyzed into xylose. It is a promising energy resource alternative that acts as a potential low-cost material for producing xylitol. In this study, quinoa straw was used as a substrate subjected to the hydrolysis of dilute sulfuric acid solut...

Descripción completa

Detalles Bibliográficos
Autores principales: Jin, Tingwei, Xing, Xiwen, Xie, Yubing, Sun, Yan, Bian, Sijia, Liu, Liying, Chen, Guang, Wang, Xinzhe, Yu, Xiaoxiao, Su, Yingjie
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9820623/
https://www.ncbi.nlm.nih.gov/pubmed/36613957
http://dx.doi.org/10.3390/ijms24010516
Descripción
Sumario:Quinoa straw is rich in hemicellulose, and it could be hydrolyzed into xylose. It is a promising energy resource alternative that acts as a potential low-cost material for producing xylitol. In this study, quinoa straw was used as a substrate subjected to the hydrolysis of dilute sulfuric acid solution. Based on the production of xylose and inhibitors during hydrolysis, the optimal conditions for the hydrolysis of hemicellulose in quinoa straw were determined. Detoxification was performed via activated carbon adsorption. The optimal detoxification conditions were determined on the basis of major inhibitor concentrations in the hydrolysate. When the addition of activated carbon was 3% at 30 °C for 40 min, the removal of formic acid, acetic acid, furfural, and 5-HMF could reach 66.52%, 64.54%, 88.31%, and 89.44%, respectively. In addition to activated carbon adsorption, vacuum evaporation was further conducted to perform two-step detoxification. Subsequently, the detoxified hydrolysate was used for xylitol fermentation. The yield of xylitol reached 0.50 g/g after 96 h of fermentation by Candida tropicalis (CICC 1779). It is 1.2-fold higher than that obtained through the sole vacuum evaporation method. This study validated the feasibility of xylitol production from quinoa straw via a biorefinery process.