Cargando…
Quality Control of Human Pluripotent Stem Cell Colonies by Computational Image Analysis Using Convolutional Neural Networks
Human pluripotent stem cells are promising for a wide range of research and therapeutic purposes. Their maintenance in culture requires the deep control of their pluripotent and clonal status. A non-invasive method for such control involves day-to-day observation of the morphological changes, along...
Autores principales: | Mamaeva, Anastasiya, Krasnova, Olga, Khvorova, Irina, Kozlov, Konstantin, Gursky, Vitaly, Samsonova, Maria, Tikhonova, Olga, Neganova, Irina |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9820636/ https://www.ncbi.nlm.nih.gov/pubmed/36613583 http://dx.doi.org/10.3390/ijms24010140 |
Ejemplares similares
-
Morphological Signal Processing for Phenotype Recognition of Human Pluripotent Stem Cells Using Machine Learning Methods
por: Vedeneeva, Ekaterina, et al.
Publicado: (2023) -
Prognostic Analysis of Human Pluripotent Stem Cells Based on Their Morphological Portrait and Expression of Pluripotent Markers
por: Krasnova, Olga A., et al.
Publicado: (2022) -
Essential Role of Adhesion GPCR, GPR123, for Human Pluripotent Stem Cells and Reprogramming towards Pluripotency
por: Krasnova, Olga A., et al.
Publicado: (2023) -
Modeling of Flowering Time in Vigna radiata with Artificial Image Objects, Convolutional Neural Network and Random Forest
por: Bavykina, Maria, et al.
Publicado: (2022) -
Sequence-based model of gap gene regulatory network
por: Kozlov, Konstantin, et al.
Publicado: (2014)