Cargando…

Genome-Wide Identification and Characterization of Auxin Response Factor (ARF) Gene Family Involved in Wood Formation and Response to Exogenous Hormone Treatment in Populus trichocarpa

Auxin is a key regulator that virtually controls almost every aspect of plant growth and development throughout its life cycle. As the major components of auxin signaling, auxin response factors (ARFs) play crucial roles in various processes of plant growth and development. In this study, a total of...

Descripción completa

Detalles Bibliográficos
Autores principales: Liu, Yingying, Wang, Ruiqi, Yu, Jiajie, Huang, Shan, Zhang, Yang, Wei, Hairong, Wei, Zhigang
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9820880/
https://www.ncbi.nlm.nih.gov/pubmed/36614182
http://dx.doi.org/10.3390/ijms24010740
_version_ 1784865565667491840
author Liu, Yingying
Wang, Ruiqi
Yu, Jiajie
Huang, Shan
Zhang, Yang
Wei, Hairong
Wei, Zhigang
author_facet Liu, Yingying
Wang, Ruiqi
Yu, Jiajie
Huang, Shan
Zhang, Yang
Wei, Hairong
Wei, Zhigang
author_sort Liu, Yingying
collection PubMed
description Auxin is a key regulator that virtually controls almost every aspect of plant growth and development throughout its life cycle. As the major components of auxin signaling, auxin response factors (ARFs) play crucial roles in various processes of plant growth and development. In this study, a total of 35 PtrARF genes were identified, and their phylogenetic relationships, chromosomal locations, synteny relationships, exon/intron structures, cis-elements, conserved motifs, and protein characteristics were systemically investigated. We also analyzed the expression patterns of these PtrARF genes and revealed that 16 of them, including PtrARF1, 3, 7, 11, 13–17, 21, 23, 26, 27, 29, 31, and 33, were preferentially expressed in primary stems, while 15 of them, including PtrARF2, 4, 6, 9, 10, 12, 18–20, 22, 24, 25, 28, 32, and 35, participated in different phases of wood formation. In addition, some PtrARF genes, with at least one cis-element related to indole-3-acetic acid (IAA) or abscisic acid (ABA) response, responded differently to exogenous IAA and ABA treatment, respectively. Three PtrARF proteins, namely PtrARF18, PtrARF23, and PtrARF29, selected from three classes, were characterized, and only PtrARF18 was a transcriptional self-activator localized in the nucleus. Moreover, Y2H and bimolecular fluorescence complementation (BiFC) assay demonstrated that PtrARF23 interacted with PtrIAA10 and PtrIAA28 in the nucleus, while PtrARF29 interacted with PtrIAA28 in the nucleus. Our results provided comprehensive information regarding the PtrARF gene family, which will lay some foundation for future research about PtrARF genes in tree development and growth, especially the wood formation, in response to cellular signaling and environmental cues.
format Online
Article
Text
id pubmed-9820880
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-98208802023-01-07 Genome-Wide Identification and Characterization of Auxin Response Factor (ARF) Gene Family Involved in Wood Formation and Response to Exogenous Hormone Treatment in Populus trichocarpa Liu, Yingying Wang, Ruiqi Yu, Jiajie Huang, Shan Zhang, Yang Wei, Hairong Wei, Zhigang Int J Mol Sci Article Auxin is a key regulator that virtually controls almost every aspect of plant growth and development throughout its life cycle. As the major components of auxin signaling, auxin response factors (ARFs) play crucial roles in various processes of plant growth and development. In this study, a total of 35 PtrARF genes were identified, and their phylogenetic relationships, chromosomal locations, synteny relationships, exon/intron structures, cis-elements, conserved motifs, and protein characteristics were systemically investigated. We also analyzed the expression patterns of these PtrARF genes and revealed that 16 of them, including PtrARF1, 3, 7, 11, 13–17, 21, 23, 26, 27, 29, 31, and 33, were preferentially expressed in primary stems, while 15 of them, including PtrARF2, 4, 6, 9, 10, 12, 18–20, 22, 24, 25, 28, 32, and 35, participated in different phases of wood formation. In addition, some PtrARF genes, with at least one cis-element related to indole-3-acetic acid (IAA) or abscisic acid (ABA) response, responded differently to exogenous IAA and ABA treatment, respectively. Three PtrARF proteins, namely PtrARF18, PtrARF23, and PtrARF29, selected from three classes, were characterized, and only PtrARF18 was a transcriptional self-activator localized in the nucleus. Moreover, Y2H and bimolecular fluorescence complementation (BiFC) assay demonstrated that PtrARF23 interacted with PtrIAA10 and PtrIAA28 in the nucleus, while PtrARF29 interacted with PtrIAA28 in the nucleus. Our results provided comprehensive information regarding the PtrARF gene family, which will lay some foundation for future research about PtrARF genes in tree development and growth, especially the wood formation, in response to cellular signaling and environmental cues. MDPI 2023-01-01 /pmc/articles/PMC9820880/ /pubmed/36614182 http://dx.doi.org/10.3390/ijms24010740 Text en © 2023 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Liu, Yingying
Wang, Ruiqi
Yu, Jiajie
Huang, Shan
Zhang, Yang
Wei, Hairong
Wei, Zhigang
Genome-Wide Identification and Characterization of Auxin Response Factor (ARF) Gene Family Involved in Wood Formation and Response to Exogenous Hormone Treatment in Populus trichocarpa
title Genome-Wide Identification and Characterization of Auxin Response Factor (ARF) Gene Family Involved in Wood Formation and Response to Exogenous Hormone Treatment in Populus trichocarpa
title_full Genome-Wide Identification and Characterization of Auxin Response Factor (ARF) Gene Family Involved in Wood Formation and Response to Exogenous Hormone Treatment in Populus trichocarpa
title_fullStr Genome-Wide Identification and Characterization of Auxin Response Factor (ARF) Gene Family Involved in Wood Formation and Response to Exogenous Hormone Treatment in Populus trichocarpa
title_full_unstemmed Genome-Wide Identification and Characterization of Auxin Response Factor (ARF) Gene Family Involved in Wood Formation and Response to Exogenous Hormone Treatment in Populus trichocarpa
title_short Genome-Wide Identification and Characterization of Auxin Response Factor (ARF) Gene Family Involved in Wood Formation and Response to Exogenous Hormone Treatment in Populus trichocarpa
title_sort genome-wide identification and characterization of auxin response factor (arf) gene family involved in wood formation and response to exogenous hormone treatment in populus trichocarpa
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9820880/
https://www.ncbi.nlm.nih.gov/pubmed/36614182
http://dx.doi.org/10.3390/ijms24010740
work_keys_str_mv AT liuyingying genomewideidentificationandcharacterizationofauxinresponsefactorarfgenefamilyinvolvedinwoodformationandresponsetoexogenoushormonetreatmentinpopulustrichocarpa
AT wangruiqi genomewideidentificationandcharacterizationofauxinresponsefactorarfgenefamilyinvolvedinwoodformationandresponsetoexogenoushormonetreatmentinpopulustrichocarpa
AT yujiajie genomewideidentificationandcharacterizationofauxinresponsefactorarfgenefamilyinvolvedinwoodformationandresponsetoexogenoushormonetreatmentinpopulustrichocarpa
AT huangshan genomewideidentificationandcharacterizationofauxinresponsefactorarfgenefamilyinvolvedinwoodformationandresponsetoexogenoushormonetreatmentinpopulustrichocarpa
AT zhangyang genomewideidentificationandcharacterizationofauxinresponsefactorarfgenefamilyinvolvedinwoodformationandresponsetoexogenoushormonetreatmentinpopulustrichocarpa
AT weihairong genomewideidentificationandcharacterizationofauxinresponsefactorarfgenefamilyinvolvedinwoodformationandresponsetoexogenoushormonetreatmentinpopulustrichocarpa
AT weizhigang genomewideidentificationandcharacterizationofauxinresponsefactorarfgenefamilyinvolvedinwoodformationandresponsetoexogenoushormonetreatmentinpopulustrichocarpa