Cargando…

Cytokinin Modulates Responses to Phytomelatonin in Arabidopsis thaliana under High Light Stress

Fine-tuned interactions between melatonin (MT) and hormones affected by environmental inputs are crucial for plant growth. Under high light (HL) conditions, melatonin reduced photodamage in Arabidopsis thaliana and contributed to the restoration of the expression of the cytokinin (CK) synthesis gene...

Descripción completa

Detalles Bibliográficos
Autores principales: Bychkov, Ivan A., Andreeva, Aleksandra A., Kudryakova, Natalia V., Kusnetsov, Victor V.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9821067/
https://www.ncbi.nlm.nih.gov/pubmed/36614184
http://dx.doi.org/10.3390/ijms24010738
Descripción
Sumario:Fine-tuned interactions between melatonin (MT) and hormones affected by environmental inputs are crucial for plant growth. Under high light (HL) conditions, melatonin reduced photodamage in Arabidopsis thaliana and contributed to the restoration of the expression of the cytokinin (CK) synthesis genes IPT3, IPT5 and LOG7 and genes for CK signal transduction AHK2,3 and ARR 1, 4, 5 and 12 which were downregulated by stress. However, CK signaling mutants displayed no significant changes in the expression of CK genes following HL + MT treatment, implying that a fully functional cytokinin signaling pathway is a prerequisite for MT–CK interactions. In turn, cytokinin treatment increased the expression of the key melatonin synthesis gene ASMT under both moderate and HL in wild-type plants. This upregulation was further accentuated in the ipt3,5,7 mutant which is highly sensitive to CK. In this mutant, in addition to ASMT, the melatonin synthesis genes SNAT and COMT, as well as the putative signaling genes CAND2 and GPA1, displayed elevated transcript levels. The results of the study suggest that melatonin acts synergistically with CK to cope with HL stress through melatonin-associated activation or repression of the respective hormonal genes.