Cargando…
Scavenging of Organic Pollutant and Fuel Generation through Cost-Effective and Abundantly Accessible Rust: A Theoretical Support with DFT Simulations
Waste management and energy generation are the foremost concerns due to their direct relationship with biological species and the environment. Herein, we report the utilization of iron rust (inorganic pollutant) as a photocatalyst for the photodegradation of methylene blue (MB) dye (organic pollutan...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9821181/ https://www.ncbi.nlm.nih.gov/pubmed/36614481 http://dx.doi.org/10.3390/ma16010142 |
_version_ | 1784865636033232896 |
---|---|
author | Khan, Nisar Gul, Tamanna Khan, Idrees Alabbad, Eman A. Ali, Shahid Saeed, Khalid Khan, Ibrahim |
author_facet | Khan, Nisar Gul, Tamanna Khan, Idrees Alabbad, Eman A. Ali, Shahid Saeed, Khalid Khan, Ibrahim |
author_sort | Khan, Nisar |
collection | PubMed |
description | Waste management and energy generation are the foremost concerns due to their direct relationship with biological species and the environment. Herein, we report the utilization of iron rust (inorganic pollutant) as a photocatalyst for the photodegradation of methylene blue (MB) dye (organic pollutant) under visible light (economic) and water oxidation (energy generation). Iron rust was collected from metallic pipes and calcined in the furnace at 700 °C for 3 h to remove the moisture/volatile content. The uncalcined and calcined rust NPs are characterized through scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), Fourier-transform infrared (FTIR) analysis, X-ray Diffraction (XRD), and thermogravimetric analysis (TGA). The morphological study illustrated that the shape of uncalcined and calcined iron rust is spongy, porous, and agglomerated. The XRD and DLS particle sizes are in a few hundred nanometers range. The photodegradation (PD) investigation shows that calcined rust NPs are potent for the PD of modeled MB, and the degradation efficiency was about 94% in a very short time of 11 min. The photoelectrochemical (PEC) measurements revealed that calcined rust NPs are more active than uncalcined rust under simulated 1 SUN illumination with the respective photocurrent densities of ~0.40 and ~0.32 mA/cm(2). The density functional theory simulations show the chemisorption of dye molecules over the catalyst surface, which evinces the high catalytic activity of the catalyst. These results demonstrate that cheaper and abundantly available rust can be useful for environmental and energy applications. |
format | Online Article Text |
id | pubmed-9821181 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-98211812023-01-07 Scavenging of Organic Pollutant and Fuel Generation through Cost-Effective and Abundantly Accessible Rust: A Theoretical Support with DFT Simulations Khan, Nisar Gul, Tamanna Khan, Idrees Alabbad, Eman A. Ali, Shahid Saeed, Khalid Khan, Ibrahim Materials (Basel) Article Waste management and energy generation are the foremost concerns due to their direct relationship with biological species and the environment. Herein, we report the utilization of iron rust (inorganic pollutant) as a photocatalyst for the photodegradation of methylene blue (MB) dye (organic pollutant) under visible light (economic) and water oxidation (energy generation). Iron rust was collected from metallic pipes and calcined in the furnace at 700 °C for 3 h to remove the moisture/volatile content. The uncalcined and calcined rust NPs are characterized through scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), Fourier-transform infrared (FTIR) analysis, X-ray Diffraction (XRD), and thermogravimetric analysis (TGA). The morphological study illustrated that the shape of uncalcined and calcined iron rust is spongy, porous, and agglomerated. The XRD and DLS particle sizes are in a few hundred nanometers range. The photodegradation (PD) investigation shows that calcined rust NPs are potent for the PD of modeled MB, and the degradation efficiency was about 94% in a very short time of 11 min. The photoelectrochemical (PEC) measurements revealed that calcined rust NPs are more active than uncalcined rust under simulated 1 SUN illumination with the respective photocurrent densities of ~0.40 and ~0.32 mA/cm(2). The density functional theory simulations show the chemisorption of dye molecules over the catalyst surface, which evinces the high catalytic activity of the catalyst. These results demonstrate that cheaper and abundantly available rust can be useful for environmental and energy applications. MDPI 2022-12-23 /pmc/articles/PMC9821181/ /pubmed/36614481 http://dx.doi.org/10.3390/ma16010142 Text en © 2022 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Khan, Nisar Gul, Tamanna Khan, Idrees Alabbad, Eman A. Ali, Shahid Saeed, Khalid Khan, Ibrahim Scavenging of Organic Pollutant and Fuel Generation through Cost-Effective and Abundantly Accessible Rust: A Theoretical Support with DFT Simulations |
title | Scavenging of Organic Pollutant and Fuel Generation through Cost-Effective and Abundantly Accessible Rust: A Theoretical Support with DFT Simulations |
title_full | Scavenging of Organic Pollutant and Fuel Generation through Cost-Effective and Abundantly Accessible Rust: A Theoretical Support with DFT Simulations |
title_fullStr | Scavenging of Organic Pollutant and Fuel Generation through Cost-Effective and Abundantly Accessible Rust: A Theoretical Support with DFT Simulations |
title_full_unstemmed | Scavenging of Organic Pollutant and Fuel Generation through Cost-Effective and Abundantly Accessible Rust: A Theoretical Support with DFT Simulations |
title_short | Scavenging of Organic Pollutant and Fuel Generation through Cost-Effective and Abundantly Accessible Rust: A Theoretical Support with DFT Simulations |
title_sort | scavenging of organic pollutant and fuel generation through cost-effective and abundantly accessible rust: a theoretical support with dft simulations |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9821181/ https://www.ncbi.nlm.nih.gov/pubmed/36614481 http://dx.doi.org/10.3390/ma16010142 |
work_keys_str_mv | AT khannisar scavengingoforganicpollutantandfuelgenerationthroughcosteffectiveandabundantlyaccessiblerustatheoreticalsupportwithdftsimulations AT gultamanna scavengingoforganicpollutantandfuelgenerationthroughcosteffectiveandabundantlyaccessiblerustatheoreticalsupportwithdftsimulations AT khanidrees scavengingoforganicpollutantandfuelgenerationthroughcosteffectiveandabundantlyaccessiblerustatheoreticalsupportwithdftsimulations AT alabbademana scavengingoforganicpollutantandfuelgenerationthroughcosteffectiveandabundantlyaccessiblerustatheoreticalsupportwithdftsimulations AT alishahid scavengingoforganicpollutantandfuelgenerationthroughcosteffectiveandabundantlyaccessiblerustatheoreticalsupportwithdftsimulations AT saeedkhalid scavengingoforganicpollutantandfuelgenerationthroughcosteffectiveandabundantlyaccessiblerustatheoreticalsupportwithdftsimulations AT khanibrahim scavengingoforganicpollutantandfuelgenerationthroughcosteffectiveandabundantlyaccessiblerustatheoreticalsupportwithdftsimulations |