Cargando…
Segmentation-Assisted Fully Convolutional Neural Network Enhances Deep Learning Performance to Identify Proliferative Diabetic Retinopathy
With the progression of diabetic retinopathy (DR) from the non-proliferative (NPDR) to proliferative (PDR) stage, the possibility of vision impairment increases significantly. Therefore, it is clinically important to detect the progression to PDR stage for proper intervention. We propose a segmentat...
Autores principales: | Alam, Minhaj, Zhao, Emma J., Lam, Carson K., Rubin, Daniel L. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9821182/ https://www.ncbi.nlm.nih.gov/pubmed/36615186 http://dx.doi.org/10.3390/jcm12010385 |
Ejemplares similares
-
Fully automatic wound segmentation with deep convolutional neural networks
por: Wang, Chuanbo, et al.
Publicado: (2020) -
Polyp Segmentation with Fully Convolutional Deep Neural Networks—Extended Evaluation Study †
por: Guo, Yunbo, et al.
Publicado: (2020) -
Fully Automated Segmentation of Lower Extremity Deep Vein Thrombosis Using Convolutional Neural Network
por: Huang, Chen, et al.
Publicado: (2019) -
Development of in-house fully residual deep convolutional neural network-based segmentation software for the male pelvic CT
por: Hirashima, Hideaki, et al.
Publicado: (2021) -
Fully automated clinical target volume segmentation for glioblastoma radiotherapy using a deep convolutional neural network
por: Sadeghi, Sogand, et al.
Publicado: (2023)