Cargando…
Simulation of High-Performance Surface Plasmon Resonance Sensor Based on D-Shaped Dual Channel Photonic Crystal Fiber for Temperature Sensing
This paper presents and numerically analyzes a refractive index sensor based on side-polished D-shaped two-channel photonic crystal fiber (PCF) and surface plasmon resonance (SPR). The effects of pore duty ratio, polishing depth, and thickness of a Nano-Titania sensitizing layer on sensor performanc...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9821244/ https://www.ncbi.nlm.nih.gov/pubmed/36614376 http://dx.doi.org/10.3390/ma16010037 |
Sumario: | This paper presents and numerically analyzes a refractive index sensor based on side-polished D-shaped two-channel photonic crystal fiber (PCF) and surface plasmon resonance (SPR). The effects of pore duty ratio, polishing depth, and thickness of a Nano-Titania sensitizing layer on sensor performance are studied, and the sensor performance is analyzed and optimized. The results show that the sensitivity of the Nano-Titania sensitized sensor can reach 3392.86 nm/RIU and temperature sensitivity of the sensor is increased to 1.320 nm/K, and the amplitude sensitivity of the unsensitized sensor can reach 376.76 RIU(−1). In addition, the influence of titanium dioxide layer on the mode field diameter of PCF fiber core is also studied. It is found out that the sensor with a 50 nm thick titanium dioxide film has a larger mode fiber diameter, and is more conducive to coupling with single-mode fiber. Our detailed results contribute to the understanding of SPR phenomena in hexagonal PCF and facilitate the implementation and application of SPR-PCF sensors. |
---|