Cargando…

The Presence of Plasmids in Lactococcus lactis IL594 Determines Changes in the Host Phenotype and Expression of Chromosomal Genes

The L. lactis IL594 strain contains seven plasmids (pIL1 to pIL7) and is the parental strain of the plasmid-free L. lactis IL1403, one of the most studied lactic acid bacteria (LAB) strain. The genetic sequences of pIL1 to pIL7 plasmids have been recently described, however the knowledge of global c...

Descripción completa

Detalles Bibliográficos
Autores principales: Kosiorek, Katarzyna, Koryszewska-Bagińska, Anna, Skoneczny, Marek, Stasiak-Różańska, Lidia, Aleksandrzak-Piekarczyk, Tamara
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9821262/
https://www.ncbi.nlm.nih.gov/pubmed/36614234
http://dx.doi.org/10.3390/ijms24010793
Descripción
Sumario:The L. lactis IL594 strain contains seven plasmids (pIL1 to pIL7) and is the parental strain of the plasmid-free L. lactis IL1403, one of the most studied lactic acid bacteria (LAB) strain. The genetic sequences of pIL1 to pIL7 plasmids have been recently described, however the knowledge of global changes in host phenotype and transcriptome remains poor. In the present study, global phenotypic analyses were combined with transcriptomic studies to evaluate a potential influence of plasmidic genes on overall gene expression in industrially important L. lactis strains. High-throughput screening of phenotypes differences revealed pronounced phenotypic differences in favor of IL594 during the metabolism of some C-sources, including lactose and β-glucosides. A plasmids-bearing strain presented increased resistance to unfavorable growth conditions, including the presence of heavy metal ions and antimicrobial compounds. Global comparative transcriptomic study of L. lactis strains revealed variation in the expression of over 370 of chromosomal genes caused by plasmids presence. The general trend presented upregulated energy metabolism and biosynthetic genes, differentially expressed regulators, prophages and cell resistance proteins. Our findings suggest that plasmids maintenance leads to significant perturbation in global gene regulation that provides change in central metabolic pathways and adaptive properties of the IL594 cells.