Cargando…
Effect of Metakaolin on the Microstructural and Chloride Ion Transport Properties of Concrete in Ocean Wave Splashing Zones
In order to address the problem of the durability deficiency of concrete in wave splash zones in a harsh marine environment, this paper investigates the effects of coupled carbonation, sulfate, and chloride salts on the strength, capillary water absorption, and ion migration properties of cement con...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9821381/ https://www.ncbi.nlm.nih.gov/pubmed/36614346 http://dx.doi.org/10.3390/ma16010007 |
_version_ | 1784865683549454336 |
---|---|
author | Yuan, Yezhen Niu, Kaimin Tian, Bo Li, Lihui Ji, Jianrui Feng, Yunxia |
author_facet | Yuan, Yezhen Niu, Kaimin Tian, Bo Li, Lihui Ji, Jianrui Feng, Yunxia |
author_sort | Yuan, Yezhen |
collection | PubMed |
description | In order to address the problem of the durability deficiency of concrete in wave splash zones in a harsh marine environment, this paper investigates the effects of coupled carbonation, sulfate, and chloride salts on the strength, capillary water absorption, and ion migration properties of cement concrete incorporated with metakaolin, and characterizes the pore structural changes with the mercury-pressure method and AC impedance technique. The results show that, compared with a single chloride salt environment, the improvement in mortar strength and impermeability with carbonation coupling is almost positively correlated with the calcium content in the specimen, and renders its pore structure more refined and denser. In contrast, the presence of sulfate reduces mortar strength and increases the ion migration coefficient. When the three factors of sulfate, carbonation, and chloride salt were coupled, damage to the strength and pore structure of the specimens was the most significant, but the specimen incorporated with 30% metakaolin had its strength improved compared with the blank group specimen; from the perspective of pore structural parameters and transport coefficient, the microstructure was denser, and the impermeability was significantly improved. |
format | Online Article Text |
id | pubmed-9821381 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-98213812023-01-07 Effect of Metakaolin on the Microstructural and Chloride Ion Transport Properties of Concrete in Ocean Wave Splashing Zones Yuan, Yezhen Niu, Kaimin Tian, Bo Li, Lihui Ji, Jianrui Feng, Yunxia Materials (Basel) Article In order to address the problem of the durability deficiency of concrete in wave splash zones in a harsh marine environment, this paper investigates the effects of coupled carbonation, sulfate, and chloride salts on the strength, capillary water absorption, and ion migration properties of cement concrete incorporated with metakaolin, and characterizes the pore structural changes with the mercury-pressure method and AC impedance technique. The results show that, compared with a single chloride salt environment, the improvement in mortar strength and impermeability with carbonation coupling is almost positively correlated with the calcium content in the specimen, and renders its pore structure more refined and denser. In contrast, the presence of sulfate reduces mortar strength and increases the ion migration coefficient. When the three factors of sulfate, carbonation, and chloride salt were coupled, damage to the strength and pore structure of the specimens was the most significant, but the specimen incorporated with 30% metakaolin had its strength improved compared with the blank group specimen; from the perspective of pore structural parameters and transport coefficient, the microstructure was denser, and the impermeability was significantly improved. MDPI 2022-12-20 /pmc/articles/PMC9821381/ /pubmed/36614346 http://dx.doi.org/10.3390/ma16010007 Text en © 2022 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Yuan, Yezhen Niu, Kaimin Tian, Bo Li, Lihui Ji, Jianrui Feng, Yunxia Effect of Metakaolin on the Microstructural and Chloride Ion Transport Properties of Concrete in Ocean Wave Splashing Zones |
title | Effect of Metakaolin on the Microstructural and Chloride Ion Transport Properties of Concrete in Ocean Wave Splashing Zones |
title_full | Effect of Metakaolin on the Microstructural and Chloride Ion Transport Properties of Concrete in Ocean Wave Splashing Zones |
title_fullStr | Effect of Metakaolin on the Microstructural and Chloride Ion Transport Properties of Concrete in Ocean Wave Splashing Zones |
title_full_unstemmed | Effect of Metakaolin on the Microstructural and Chloride Ion Transport Properties of Concrete in Ocean Wave Splashing Zones |
title_short | Effect of Metakaolin on the Microstructural and Chloride Ion Transport Properties of Concrete in Ocean Wave Splashing Zones |
title_sort | effect of metakaolin on the microstructural and chloride ion transport properties of concrete in ocean wave splashing zones |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9821381/ https://www.ncbi.nlm.nih.gov/pubmed/36614346 http://dx.doi.org/10.3390/ma16010007 |
work_keys_str_mv | AT yuanyezhen effectofmetakaolinonthemicrostructuralandchlorideiontransportpropertiesofconcreteinoceanwavesplashingzones AT niukaimin effectofmetakaolinonthemicrostructuralandchlorideiontransportpropertiesofconcreteinoceanwavesplashingzones AT tianbo effectofmetakaolinonthemicrostructuralandchlorideiontransportpropertiesofconcreteinoceanwavesplashingzones AT lilihui effectofmetakaolinonthemicrostructuralandchlorideiontransportpropertiesofconcreteinoceanwavesplashingzones AT jijianrui effectofmetakaolinonthemicrostructuralandchlorideiontransportpropertiesofconcreteinoceanwavesplashingzones AT fengyunxia effectofmetakaolinonthemicrostructuralandchlorideiontransportpropertiesofconcreteinoceanwavesplashingzones |