Cargando…

Sorting Transcriptomics Immune Information from Tumor Molecular Features Allows Prediction of Response to Anti-PD1 Therapy in Patients with Advanced Melanoma

Immunotherapy based on anti-PD1 antibodies has improved the outcome of advanced melanoma. However, prediction of response to immunotherapy remains an unmet need in the field. Tumor PD-L1 expression, mutational burden, gene profiles and microbiome profiles have been proposed as potential markers but...

Descripción completa

Detalles Bibliográficos
Autores principales: Trilla-Fuertes, Lucía, Gámez-Pozo, Angelo, Prado-Vázquez, Guillermo, López-Vacas, Rocío, Zapater-Moros, Andrea, López-Camacho, Elena, Lumbreras-Herrera, María I., Soriano, Virtudes, Garicano, Fernando, Lecumberri, Mª José, Rodríguez de la Borbolla, María, Majem, Margarita, Pérez-Ruiz, Elisabeth, González-Cao, María, Oramas, Juana, Magdaleno, Alejandra, Fra, Joaquín, Martín-Carnicero, Alfonso, Corral, Mónica, Puértolas, Teresa, Ramos, Ricardo, Fresno Vara, Juan Ángel, Espinosa, Enrique
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9821399/
https://www.ncbi.nlm.nih.gov/pubmed/36614248
http://dx.doi.org/10.3390/ijms24010801
_version_ 1784865687843373056
author Trilla-Fuertes, Lucía
Gámez-Pozo, Angelo
Prado-Vázquez, Guillermo
López-Vacas, Rocío
Zapater-Moros, Andrea
López-Camacho, Elena
Lumbreras-Herrera, María I.
Soriano, Virtudes
Garicano, Fernando
Lecumberri, Mª José
Rodríguez de la Borbolla, María
Majem, Margarita
Pérez-Ruiz, Elisabeth
González-Cao, María
Oramas, Juana
Magdaleno, Alejandra
Fra, Joaquín
Martín-Carnicero, Alfonso
Corral, Mónica
Puértolas, Teresa
Ramos, Ricardo
Fresno Vara, Juan Ángel
Espinosa, Enrique
author_facet Trilla-Fuertes, Lucía
Gámez-Pozo, Angelo
Prado-Vázquez, Guillermo
López-Vacas, Rocío
Zapater-Moros, Andrea
López-Camacho, Elena
Lumbreras-Herrera, María I.
Soriano, Virtudes
Garicano, Fernando
Lecumberri, Mª José
Rodríguez de la Borbolla, María
Majem, Margarita
Pérez-Ruiz, Elisabeth
González-Cao, María
Oramas, Juana
Magdaleno, Alejandra
Fra, Joaquín
Martín-Carnicero, Alfonso
Corral, Mónica
Puértolas, Teresa
Ramos, Ricardo
Fresno Vara, Juan Ángel
Espinosa, Enrique
author_sort Trilla-Fuertes, Lucía
collection PubMed
description Immunotherapy based on anti-PD1 antibodies has improved the outcome of advanced melanoma. However, prediction of response to immunotherapy remains an unmet need in the field. Tumor PD-L1 expression, mutational burden, gene profiles and microbiome profiles have been proposed as potential markers but are not used in clinical practice. Probabilistic graphical models and classificatory algorithms were used to classify melanoma tumor samples from a TCGA cohort. A cohort of patients with advanced melanoma treated with PD-1 inhibitors was also analyzed. We established that gene expression data can be grouped in two different layers of information: immune and molecular. In the TCGA, the molecular classification provided information on processes such as epidermis development and keratinization, melanogenesis, and extracellular space and membrane. The immune layer classification was able to distinguish between responders and non-responders to immunotherapy in an independent series of patients with advanced melanoma treated with PD-1 inhibitors. We established that the immune information is independent than molecular features of the tumors in melanoma TCGA cohort, and an immune classification of these tumors was established. This immune classification was capable to determine what patients are going to respond to immunotherapy in a new cohort of patients with advanced melanoma treated with PD-1 inhibitors Therefore, this immune signature could be useful to the clinicians to identify those patients who will respond to immunotherapy.
format Online
Article
Text
id pubmed-9821399
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-98213992023-01-07 Sorting Transcriptomics Immune Information from Tumor Molecular Features Allows Prediction of Response to Anti-PD1 Therapy in Patients with Advanced Melanoma Trilla-Fuertes, Lucía Gámez-Pozo, Angelo Prado-Vázquez, Guillermo López-Vacas, Rocío Zapater-Moros, Andrea López-Camacho, Elena Lumbreras-Herrera, María I. Soriano, Virtudes Garicano, Fernando Lecumberri, Mª José Rodríguez de la Borbolla, María Majem, Margarita Pérez-Ruiz, Elisabeth González-Cao, María Oramas, Juana Magdaleno, Alejandra Fra, Joaquín Martín-Carnicero, Alfonso Corral, Mónica Puértolas, Teresa Ramos, Ricardo Fresno Vara, Juan Ángel Espinosa, Enrique Int J Mol Sci Article Immunotherapy based on anti-PD1 antibodies has improved the outcome of advanced melanoma. However, prediction of response to immunotherapy remains an unmet need in the field. Tumor PD-L1 expression, mutational burden, gene profiles and microbiome profiles have been proposed as potential markers but are not used in clinical practice. Probabilistic graphical models and classificatory algorithms were used to classify melanoma tumor samples from a TCGA cohort. A cohort of patients with advanced melanoma treated with PD-1 inhibitors was also analyzed. We established that gene expression data can be grouped in two different layers of information: immune and molecular. In the TCGA, the molecular classification provided information on processes such as epidermis development and keratinization, melanogenesis, and extracellular space and membrane. The immune layer classification was able to distinguish between responders and non-responders to immunotherapy in an independent series of patients with advanced melanoma treated with PD-1 inhibitors. We established that the immune information is independent than molecular features of the tumors in melanoma TCGA cohort, and an immune classification of these tumors was established. This immune classification was capable to determine what patients are going to respond to immunotherapy in a new cohort of patients with advanced melanoma treated with PD-1 inhibitors Therefore, this immune signature could be useful to the clinicians to identify those patients who will respond to immunotherapy. MDPI 2023-01-02 /pmc/articles/PMC9821399/ /pubmed/36614248 http://dx.doi.org/10.3390/ijms24010801 Text en © 2023 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Trilla-Fuertes, Lucía
Gámez-Pozo, Angelo
Prado-Vázquez, Guillermo
López-Vacas, Rocío
Zapater-Moros, Andrea
López-Camacho, Elena
Lumbreras-Herrera, María I.
Soriano, Virtudes
Garicano, Fernando
Lecumberri, Mª José
Rodríguez de la Borbolla, María
Majem, Margarita
Pérez-Ruiz, Elisabeth
González-Cao, María
Oramas, Juana
Magdaleno, Alejandra
Fra, Joaquín
Martín-Carnicero, Alfonso
Corral, Mónica
Puértolas, Teresa
Ramos, Ricardo
Fresno Vara, Juan Ángel
Espinosa, Enrique
Sorting Transcriptomics Immune Information from Tumor Molecular Features Allows Prediction of Response to Anti-PD1 Therapy in Patients with Advanced Melanoma
title Sorting Transcriptomics Immune Information from Tumor Molecular Features Allows Prediction of Response to Anti-PD1 Therapy in Patients with Advanced Melanoma
title_full Sorting Transcriptomics Immune Information from Tumor Molecular Features Allows Prediction of Response to Anti-PD1 Therapy in Patients with Advanced Melanoma
title_fullStr Sorting Transcriptomics Immune Information from Tumor Molecular Features Allows Prediction of Response to Anti-PD1 Therapy in Patients with Advanced Melanoma
title_full_unstemmed Sorting Transcriptomics Immune Information from Tumor Molecular Features Allows Prediction of Response to Anti-PD1 Therapy in Patients with Advanced Melanoma
title_short Sorting Transcriptomics Immune Information from Tumor Molecular Features Allows Prediction of Response to Anti-PD1 Therapy in Patients with Advanced Melanoma
title_sort sorting transcriptomics immune information from tumor molecular features allows prediction of response to anti-pd1 therapy in patients with advanced melanoma
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9821399/
https://www.ncbi.nlm.nih.gov/pubmed/36614248
http://dx.doi.org/10.3390/ijms24010801
work_keys_str_mv AT trillafuerteslucia sortingtranscriptomicsimmuneinformationfromtumormolecularfeaturesallowspredictionofresponsetoantipd1therapyinpatientswithadvancedmelanoma
AT gamezpozoangelo sortingtranscriptomicsimmuneinformationfromtumormolecularfeaturesallowspredictionofresponsetoantipd1therapyinpatientswithadvancedmelanoma
AT pradovazquezguillermo sortingtranscriptomicsimmuneinformationfromtumormolecularfeaturesallowspredictionofresponsetoantipd1therapyinpatientswithadvancedmelanoma
AT lopezvacasrocio sortingtranscriptomicsimmuneinformationfromtumormolecularfeaturesallowspredictionofresponsetoantipd1therapyinpatientswithadvancedmelanoma
AT zapatermorosandrea sortingtranscriptomicsimmuneinformationfromtumormolecularfeaturesallowspredictionofresponsetoantipd1therapyinpatientswithadvancedmelanoma
AT lopezcamachoelena sortingtranscriptomicsimmuneinformationfromtumormolecularfeaturesallowspredictionofresponsetoantipd1therapyinpatientswithadvancedmelanoma
AT lumbrerasherreramariai sortingtranscriptomicsimmuneinformationfromtumormolecularfeaturesallowspredictionofresponsetoantipd1therapyinpatientswithadvancedmelanoma
AT sorianovirtudes sortingtranscriptomicsimmuneinformationfromtumormolecularfeaturesallowspredictionofresponsetoantipd1therapyinpatientswithadvancedmelanoma
AT garicanofernando sortingtranscriptomicsimmuneinformationfromtumormolecularfeaturesallowspredictionofresponsetoantipd1therapyinpatientswithadvancedmelanoma
AT lecumberrimajose sortingtranscriptomicsimmuneinformationfromtumormolecularfeaturesallowspredictionofresponsetoantipd1therapyinpatientswithadvancedmelanoma
AT rodriguezdelaborbollamaria sortingtranscriptomicsimmuneinformationfromtumormolecularfeaturesallowspredictionofresponsetoantipd1therapyinpatientswithadvancedmelanoma
AT majemmargarita sortingtranscriptomicsimmuneinformationfromtumormolecularfeaturesallowspredictionofresponsetoantipd1therapyinpatientswithadvancedmelanoma
AT perezruizelisabeth sortingtranscriptomicsimmuneinformationfromtumormolecularfeaturesallowspredictionofresponsetoantipd1therapyinpatientswithadvancedmelanoma
AT gonzalezcaomaria sortingtranscriptomicsimmuneinformationfromtumormolecularfeaturesallowspredictionofresponsetoantipd1therapyinpatientswithadvancedmelanoma
AT oramasjuana sortingtranscriptomicsimmuneinformationfromtumormolecularfeaturesallowspredictionofresponsetoantipd1therapyinpatientswithadvancedmelanoma
AT magdalenoalejandra sortingtranscriptomicsimmuneinformationfromtumormolecularfeaturesallowspredictionofresponsetoantipd1therapyinpatientswithadvancedmelanoma
AT frajoaquin sortingtranscriptomicsimmuneinformationfromtumormolecularfeaturesallowspredictionofresponsetoantipd1therapyinpatientswithadvancedmelanoma
AT martincarniceroalfonso sortingtranscriptomicsimmuneinformationfromtumormolecularfeaturesallowspredictionofresponsetoantipd1therapyinpatientswithadvancedmelanoma
AT corralmonica sortingtranscriptomicsimmuneinformationfromtumormolecularfeaturesallowspredictionofresponsetoantipd1therapyinpatientswithadvancedmelanoma
AT puertolasteresa sortingtranscriptomicsimmuneinformationfromtumormolecularfeaturesallowspredictionofresponsetoantipd1therapyinpatientswithadvancedmelanoma
AT ramosricardo sortingtranscriptomicsimmuneinformationfromtumormolecularfeaturesallowspredictionofresponsetoantipd1therapyinpatientswithadvancedmelanoma
AT fresnovarajuanangel sortingtranscriptomicsimmuneinformationfromtumormolecularfeaturesallowspredictionofresponsetoantipd1therapyinpatientswithadvancedmelanoma
AT espinosaenrique sortingtranscriptomicsimmuneinformationfromtumormolecularfeaturesallowspredictionofresponsetoantipd1therapyinpatientswithadvancedmelanoma