Cargando…
Sorting Transcriptomics Immune Information from Tumor Molecular Features Allows Prediction of Response to Anti-PD1 Therapy in Patients with Advanced Melanoma
Immunotherapy based on anti-PD1 antibodies has improved the outcome of advanced melanoma. However, prediction of response to immunotherapy remains an unmet need in the field. Tumor PD-L1 expression, mutational burden, gene profiles and microbiome profiles have been proposed as potential markers but...
Autores principales: | , , , , , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9821399/ https://www.ncbi.nlm.nih.gov/pubmed/36614248 http://dx.doi.org/10.3390/ijms24010801 |
_version_ | 1784865687843373056 |
---|---|
author | Trilla-Fuertes, Lucía Gámez-Pozo, Angelo Prado-Vázquez, Guillermo López-Vacas, Rocío Zapater-Moros, Andrea López-Camacho, Elena Lumbreras-Herrera, María I. Soriano, Virtudes Garicano, Fernando Lecumberri, Mª José Rodríguez de la Borbolla, María Majem, Margarita Pérez-Ruiz, Elisabeth González-Cao, María Oramas, Juana Magdaleno, Alejandra Fra, Joaquín Martín-Carnicero, Alfonso Corral, Mónica Puértolas, Teresa Ramos, Ricardo Fresno Vara, Juan Ángel Espinosa, Enrique |
author_facet | Trilla-Fuertes, Lucía Gámez-Pozo, Angelo Prado-Vázquez, Guillermo López-Vacas, Rocío Zapater-Moros, Andrea López-Camacho, Elena Lumbreras-Herrera, María I. Soriano, Virtudes Garicano, Fernando Lecumberri, Mª José Rodríguez de la Borbolla, María Majem, Margarita Pérez-Ruiz, Elisabeth González-Cao, María Oramas, Juana Magdaleno, Alejandra Fra, Joaquín Martín-Carnicero, Alfonso Corral, Mónica Puértolas, Teresa Ramos, Ricardo Fresno Vara, Juan Ángel Espinosa, Enrique |
author_sort | Trilla-Fuertes, Lucía |
collection | PubMed |
description | Immunotherapy based on anti-PD1 antibodies has improved the outcome of advanced melanoma. However, prediction of response to immunotherapy remains an unmet need in the field. Tumor PD-L1 expression, mutational burden, gene profiles and microbiome profiles have been proposed as potential markers but are not used in clinical practice. Probabilistic graphical models and classificatory algorithms were used to classify melanoma tumor samples from a TCGA cohort. A cohort of patients with advanced melanoma treated with PD-1 inhibitors was also analyzed. We established that gene expression data can be grouped in two different layers of information: immune and molecular. In the TCGA, the molecular classification provided information on processes such as epidermis development and keratinization, melanogenesis, and extracellular space and membrane. The immune layer classification was able to distinguish between responders and non-responders to immunotherapy in an independent series of patients with advanced melanoma treated with PD-1 inhibitors. We established that the immune information is independent than molecular features of the tumors in melanoma TCGA cohort, and an immune classification of these tumors was established. This immune classification was capable to determine what patients are going to respond to immunotherapy in a new cohort of patients with advanced melanoma treated with PD-1 inhibitors Therefore, this immune signature could be useful to the clinicians to identify those patients who will respond to immunotherapy. |
format | Online Article Text |
id | pubmed-9821399 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-98213992023-01-07 Sorting Transcriptomics Immune Information from Tumor Molecular Features Allows Prediction of Response to Anti-PD1 Therapy in Patients with Advanced Melanoma Trilla-Fuertes, Lucía Gámez-Pozo, Angelo Prado-Vázquez, Guillermo López-Vacas, Rocío Zapater-Moros, Andrea López-Camacho, Elena Lumbreras-Herrera, María I. Soriano, Virtudes Garicano, Fernando Lecumberri, Mª José Rodríguez de la Borbolla, María Majem, Margarita Pérez-Ruiz, Elisabeth González-Cao, María Oramas, Juana Magdaleno, Alejandra Fra, Joaquín Martín-Carnicero, Alfonso Corral, Mónica Puértolas, Teresa Ramos, Ricardo Fresno Vara, Juan Ángel Espinosa, Enrique Int J Mol Sci Article Immunotherapy based on anti-PD1 antibodies has improved the outcome of advanced melanoma. However, prediction of response to immunotherapy remains an unmet need in the field. Tumor PD-L1 expression, mutational burden, gene profiles and microbiome profiles have been proposed as potential markers but are not used in clinical practice. Probabilistic graphical models and classificatory algorithms were used to classify melanoma tumor samples from a TCGA cohort. A cohort of patients with advanced melanoma treated with PD-1 inhibitors was also analyzed. We established that gene expression data can be grouped in two different layers of information: immune and molecular. In the TCGA, the molecular classification provided information on processes such as epidermis development and keratinization, melanogenesis, and extracellular space and membrane. The immune layer classification was able to distinguish between responders and non-responders to immunotherapy in an independent series of patients with advanced melanoma treated with PD-1 inhibitors. We established that the immune information is independent than molecular features of the tumors in melanoma TCGA cohort, and an immune classification of these tumors was established. This immune classification was capable to determine what patients are going to respond to immunotherapy in a new cohort of patients with advanced melanoma treated with PD-1 inhibitors Therefore, this immune signature could be useful to the clinicians to identify those patients who will respond to immunotherapy. MDPI 2023-01-02 /pmc/articles/PMC9821399/ /pubmed/36614248 http://dx.doi.org/10.3390/ijms24010801 Text en © 2023 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Trilla-Fuertes, Lucía Gámez-Pozo, Angelo Prado-Vázquez, Guillermo López-Vacas, Rocío Zapater-Moros, Andrea López-Camacho, Elena Lumbreras-Herrera, María I. Soriano, Virtudes Garicano, Fernando Lecumberri, Mª José Rodríguez de la Borbolla, María Majem, Margarita Pérez-Ruiz, Elisabeth González-Cao, María Oramas, Juana Magdaleno, Alejandra Fra, Joaquín Martín-Carnicero, Alfonso Corral, Mónica Puértolas, Teresa Ramos, Ricardo Fresno Vara, Juan Ángel Espinosa, Enrique Sorting Transcriptomics Immune Information from Tumor Molecular Features Allows Prediction of Response to Anti-PD1 Therapy in Patients with Advanced Melanoma |
title | Sorting Transcriptomics Immune Information from Tumor Molecular Features Allows Prediction of Response to Anti-PD1 Therapy in Patients with Advanced Melanoma |
title_full | Sorting Transcriptomics Immune Information from Tumor Molecular Features Allows Prediction of Response to Anti-PD1 Therapy in Patients with Advanced Melanoma |
title_fullStr | Sorting Transcriptomics Immune Information from Tumor Molecular Features Allows Prediction of Response to Anti-PD1 Therapy in Patients with Advanced Melanoma |
title_full_unstemmed | Sorting Transcriptomics Immune Information from Tumor Molecular Features Allows Prediction of Response to Anti-PD1 Therapy in Patients with Advanced Melanoma |
title_short | Sorting Transcriptomics Immune Information from Tumor Molecular Features Allows Prediction of Response to Anti-PD1 Therapy in Patients with Advanced Melanoma |
title_sort | sorting transcriptomics immune information from tumor molecular features allows prediction of response to anti-pd1 therapy in patients with advanced melanoma |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9821399/ https://www.ncbi.nlm.nih.gov/pubmed/36614248 http://dx.doi.org/10.3390/ijms24010801 |
work_keys_str_mv | AT trillafuerteslucia sortingtranscriptomicsimmuneinformationfromtumormolecularfeaturesallowspredictionofresponsetoantipd1therapyinpatientswithadvancedmelanoma AT gamezpozoangelo sortingtranscriptomicsimmuneinformationfromtumormolecularfeaturesallowspredictionofresponsetoantipd1therapyinpatientswithadvancedmelanoma AT pradovazquezguillermo sortingtranscriptomicsimmuneinformationfromtumormolecularfeaturesallowspredictionofresponsetoantipd1therapyinpatientswithadvancedmelanoma AT lopezvacasrocio sortingtranscriptomicsimmuneinformationfromtumormolecularfeaturesallowspredictionofresponsetoantipd1therapyinpatientswithadvancedmelanoma AT zapatermorosandrea sortingtranscriptomicsimmuneinformationfromtumormolecularfeaturesallowspredictionofresponsetoantipd1therapyinpatientswithadvancedmelanoma AT lopezcamachoelena sortingtranscriptomicsimmuneinformationfromtumormolecularfeaturesallowspredictionofresponsetoantipd1therapyinpatientswithadvancedmelanoma AT lumbrerasherreramariai sortingtranscriptomicsimmuneinformationfromtumormolecularfeaturesallowspredictionofresponsetoantipd1therapyinpatientswithadvancedmelanoma AT sorianovirtudes sortingtranscriptomicsimmuneinformationfromtumormolecularfeaturesallowspredictionofresponsetoantipd1therapyinpatientswithadvancedmelanoma AT garicanofernando sortingtranscriptomicsimmuneinformationfromtumormolecularfeaturesallowspredictionofresponsetoantipd1therapyinpatientswithadvancedmelanoma AT lecumberrimajose sortingtranscriptomicsimmuneinformationfromtumormolecularfeaturesallowspredictionofresponsetoantipd1therapyinpatientswithadvancedmelanoma AT rodriguezdelaborbollamaria sortingtranscriptomicsimmuneinformationfromtumormolecularfeaturesallowspredictionofresponsetoantipd1therapyinpatientswithadvancedmelanoma AT majemmargarita sortingtranscriptomicsimmuneinformationfromtumormolecularfeaturesallowspredictionofresponsetoantipd1therapyinpatientswithadvancedmelanoma AT perezruizelisabeth sortingtranscriptomicsimmuneinformationfromtumormolecularfeaturesallowspredictionofresponsetoantipd1therapyinpatientswithadvancedmelanoma AT gonzalezcaomaria sortingtranscriptomicsimmuneinformationfromtumormolecularfeaturesallowspredictionofresponsetoantipd1therapyinpatientswithadvancedmelanoma AT oramasjuana sortingtranscriptomicsimmuneinformationfromtumormolecularfeaturesallowspredictionofresponsetoantipd1therapyinpatientswithadvancedmelanoma AT magdalenoalejandra sortingtranscriptomicsimmuneinformationfromtumormolecularfeaturesallowspredictionofresponsetoantipd1therapyinpatientswithadvancedmelanoma AT frajoaquin sortingtranscriptomicsimmuneinformationfromtumormolecularfeaturesallowspredictionofresponsetoantipd1therapyinpatientswithadvancedmelanoma AT martincarniceroalfonso sortingtranscriptomicsimmuneinformationfromtumormolecularfeaturesallowspredictionofresponsetoantipd1therapyinpatientswithadvancedmelanoma AT corralmonica sortingtranscriptomicsimmuneinformationfromtumormolecularfeaturesallowspredictionofresponsetoantipd1therapyinpatientswithadvancedmelanoma AT puertolasteresa sortingtranscriptomicsimmuneinformationfromtumormolecularfeaturesallowspredictionofresponsetoantipd1therapyinpatientswithadvancedmelanoma AT ramosricardo sortingtranscriptomicsimmuneinformationfromtumormolecularfeaturesallowspredictionofresponsetoantipd1therapyinpatientswithadvancedmelanoma AT fresnovarajuanangel sortingtranscriptomicsimmuneinformationfromtumormolecularfeaturesallowspredictionofresponsetoantipd1therapyinpatientswithadvancedmelanoma AT espinosaenrique sortingtranscriptomicsimmuneinformationfromtumormolecularfeaturesallowspredictionofresponsetoantipd1therapyinpatientswithadvancedmelanoma |