Cargando…
An adaptive spatiotemporal correlation filtering visual tracking method
Discriminative correlation filter (DCF) tracking algorithms are commonly used for visual tracking. However, we observed that different spatio-temporal targets exhibit varied visual appearances, and most DCF-based trackers neglect to exploit this spatio-temporal information during the tracking proces...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9821422/ https://www.ncbi.nlm.nih.gov/pubmed/36607906 http://dx.doi.org/10.1371/journal.pone.0279240 |
_version_ | 1784865693304356864 |
---|---|
author | Liu, Yuhan Yan, He Zhang, Wei Li, Mengxue Liu, Lingkun |
author_facet | Liu, Yuhan Yan, He Zhang, Wei Li, Mengxue Liu, Lingkun |
author_sort | Liu, Yuhan |
collection | PubMed |
description | Discriminative correlation filter (DCF) tracking algorithms are commonly used for visual tracking. However, we observed that different spatio-temporal targets exhibit varied visual appearances, and most DCF-based trackers neglect to exploit this spatio-temporal information during the tracking process. To address the above-mentioned issues, we propose a three-way adaptive spatio-temporal correlation filtering tracker, named ASCF, that makes fuller use of the spatio-temporal information during tracking. To be specific, we extract rich local and global visual features based on the Conformer network, establish three correlation filters at different spatio-temporal locations during the tracking process, and the three correlation filters independently track the target. Then, to adaptively select the correlation filter to achieve target tracking, we employ the average peak-to-correlation energy (APCE) and the peak-to-sidelobe ratio (PSR) to measure the reliability of the tracking results. In addition, we propose an adaptive model update strategy that adjusts the update frequency of the three correlation filters in different ways to avoid model drift due to the introduction of similar objects or background noise. Extensive experimental results on five benchmarks demonstrate that our algorithm achieves excellent performance compared to state-of-the-art trackers. |
format | Online Article Text |
id | pubmed-9821422 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-98214222023-01-07 An adaptive spatiotemporal correlation filtering visual tracking method Liu, Yuhan Yan, He Zhang, Wei Li, Mengxue Liu, Lingkun PLoS One Research Article Discriminative correlation filter (DCF) tracking algorithms are commonly used for visual tracking. However, we observed that different spatio-temporal targets exhibit varied visual appearances, and most DCF-based trackers neglect to exploit this spatio-temporal information during the tracking process. To address the above-mentioned issues, we propose a three-way adaptive spatio-temporal correlation filtering tracker, named ASCF, that makes fuller use of the spatio-temporal information during tracking. To be specific, we extract rich local and global visual features based on the Conformer network, establish three correlation filters at different spatio-temporal locations during the tracking process, and the three correlation filters independently track the target. Then, to adaptively select the correlation filter to achieve target tracking, we employ the average peak-to-correlation energy (APCE) and the peak-to-sidelobe ratio (PSR) to measure the reliability of the tracking results. In addition, we propose an adaptive model update strategy that adjusts the update frequency of the three correlation filters in different ways to avoid model drift due to the introduction of similar objects or background noise. Extensive experimental results on five benchmarks demonstrate that our algorithm achieves excellent performance compared to state-of-the-art trackers. Public Library of Science 2023-01-06 /pmc/articles/PMC9821422/ /pubmed/36607906 http://dx.doi.org/10.1371/journal.pone.0279240 Text en © 2023 Liu et al https://creativecommons.org/licenses/by/4.0/This is an open access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. |
spellingShingle | Research Article Liu, Yuhan Yan, He Zhang, Wei Li, Mengxue Liu, Lingkun An adaptive spatiotemporal correlation filtering visual tracking method |
title | An adaptive spatiotemporal correlation filtering visual tracking method |
title_full | An adaptive spatiotemporal correlation filtering visual tracking method |
title_fullStr | An adaptive spatiotemporal correlation filtering visual tracking method |
title_full_unstemmed | An adaptive spatiotemporal correlation filtering visual tracking method |
title_short | An adaptive spatiotemporal correlation filtering visual tracking method |
title_sort | adaptive spatiotemporal correlation filtering visual tracking method |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9821422/ https://www.ncbi.nlm.nih.gov/pubmed/36607906 http://dx.doi.org/10.1371/journal.pone.0279240 |
work_keys_str_mv | AT liuyuhan anadaptivespatiotemporalcorrelationfilteringvisualtrackingmethod AT yanhe anadaptivespatiotemporalcorrelationfilteringvisualtrackingmethod AT zhangwei anadaptivespatiotemporalcorrelationfilteringvisualtrackingmethod AT limengxue anadaptivespatiotemporalcorrelationfilteringvisualtrackingmethod AT liulingkun anadaptivespatiotemporalcorrelationfilteringvisualtrackingmethod AT liuyuhan adaptivespatiotemporalcorrelationfilteringvisualtrackingmethod AT yanhe adaptivespatiotemporalcorrelationfilteringvisualtrackingmethod AT zhangwei adaptivespatiotemporalcorrelationfilteringvisualtrackingmethod AT limengxue adaptivespatiotemporalcorrelationfilteringvisualtrackingmethod AT liulingkun adaptivespatiotemporalcorrelationfilteringvisualtrackingmethod |