Cargando…
Deep learning prediction of pathological complete response, residual cancer burden, and progression-free survival in breast cancer patients
The goal of this study was to employ novel deep-learning convolutional-neural-network (CNN) to predict pathological complete response (PCR), residual cancer burden (RCB), and progression-free survival (PFS) in breast cancer patients treated with neoadjuvant chemotherapy using longitudinal multiparam...
Autores principales: | Dammu, Hongyi, Ren, Thomas, Duong, Tim Q. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9821469/ https://www.ncbi.nlm.nih.gov/pubmed/36607982 http://dx.doi.org/10.1371/journal.pone.0280148 |
Ejemplares similares
-
Deep Learning Prediction of Pathologic Complete Response in Breast Cancer Using MRI and Other Clinical Data: A Systematic Review
por: Khan, Nabeeha, et al.
Publicado: (2022) -
Machine learning with textural analysis of longitudinal multiparametric MRI and molecular subtypes accurately predicts pathologic complete response in patients with invasive breast cancer
por: Syed, Aaquib, et al.
Publicado: (2023) -
Correlation between pathologic complete response, event-free survival/disease-free survival and overall survival in neoadjuvant and/or adjuvant HR+/HER2-breast cancer
por: Gogate, Anagha, et al.
Publicado: (2023) -
MRI radiomics predicts progression-free survival in prostate cancer
por: Jia, Yushan, et al.
Publicado: (2022) -
Deep learning of longitudinal chest X-ray and clinical variables predicts duration on ventilator and mortality in COVID-19 patients
por: Duanmu, Hongyi, et al.
Publicado: (2022)