Cargando…
Immunochemical characterisation of styrene maleic acid lipid particles prepared from Mycobacterium tuberculosis plasma membrane
Membrane proteins of Mycobacterium tuberculosis (Mtb) can be targeted for the development of therapeutic and prophylactic interventions against tuberculosis. We have utilized the unique membrane-solubilising properties of the styrene maleic acid copolymer <styrene:maleic acid::2:1> (SMA) to pr...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9821473/ https://www.ncbi.nlm.nih.gov/pubmed/36608027 http://dx.doi.org/10.1371/journal.pone.0280074 |
Sumario: | Membrane proteins of Mycobacterium tuberculosis (Mtb) can be targeted for the development of therapeutic and prophylactic interventions against tuberculosis. We have utilized the unique membrane-solubilising properties of the styrene maleic acid copolymer <styrene:maleic acid::2:1> (SMA) to prepare and characterise ‘styrene maleic acid lipid particles’ from the native membrane of Mtb (MtM-SMALPs). When resolved by SDS-PAGE and visualised with coomassie blue, the molecular weights of Mtb membrane (MtM) proteins solubilised by SMA were mostly in the range of 40–70 kDa. When visualised by transmission electron microscopy, MtM-SMALPs appeared as nanoparticles of discrete shapes and sizes. The discoid nanoparticles exhibited a range of diameters of ~10–90 nm, with largest portion (~61%) ranging from 20–40 nm. MtM proteins of a molecular weight-range overlapping with that of MtM-SMALPs were also amenable to chemical cross-linking, revealing protein complex formation. Characterisation using monoclonal antibodies against seven MtM-associated antigens confirmed the incorporation of the inner membrane protein PRA, membrane-associated proteins PstS1, LpqH and Ag85, and the lipoglycan LAM into MtM-SMALPs. Conversely, the peripheral membrane proteins Acr and PspA were nearly completely excluded. Furthermore, although MtM showed an abundance of Con A-binding glycoproteins, MtM-SMALPs appeared devoid of these species. Immune responses of healthcare workers harbouring ‘latent TB infection’ provided additional insights. While MtM-SMALPs and MtM induced comparable levels of the cytokine IFN-γ, only MtM-SMALPs could induce the production of TNF-α. Antibodies present in the donor sera showed significantly higher binding to MtM than to MtM-SMALPs. These results have implications for the development of MtM-based immunoprophylaxis against tuberculosis. |
---|