Cargando…

CRPGAN: Learning image-to-image translation of two unpaired images by cross-attention mechanism and parallelization strategy

Unsupervised image-to-image translation (UI2I) tasks aim to find a mapping between the source and the target domains from unpaired training data. Previous methods can not effectively capture the differences between the source and the target domain on different scales and often leads to poor quality...

Descripción completa

Detalles Bibliográficos
Autores principales: Feng, Long, Geng, Guohua, Li, Qihang, Jiang, Yi, Li, Zhan, Li, Kang
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9821492/
https://www.ncbi.nlm.nih.gov/pubmed/36607995
http://dx.doi.org/10.1371/journal.pone.0280073
Descripción
Sumario:Unsupervised image-to-image translation (UI2I) tasks aim to find a mapping between the source and the target domains from unpaired training data. Previous methods can not effectively capture the differences between the source and the target domain on different scales and often leads to poor quality of the generated images, noise, distortion, and other conditions that do not match human vision perception, and has high time complexity. To address this problem, we propose a multi-scale training structure and a progressive growth generator method to solve UI2I task. Our method refines the generated images from global structures to local details by adding new convolution blocks continuously and shares the network parameters in different scales and also in the same scale of network. Finally, we propose a new Cross-CBAM mechanism (CRCBAM), which uses a multi-layer spatial attention and channel attention cross structure to generate more refined style images. Experiments on our collected Opera Face, and other open datasets Summer↔Winter, Horse↔Zebra, Photo↔Van Gogh, show that the proposed algorithm is superior to other state-of-art algorithms.